A~problem of Salem and Zygmund on the smoothness of an analytic function that generated a~Peano curve
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 485-497

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\gamma_0$ denote the supremum of the numbers $\gamma\in(0,1)$ for which there is a function $F\in\operatorname{Lip}\gamma$ on the closed unit disk $D=\{z:|z|\leqslant 1\}$ such that $F$ is analytic inside $D$ and the set $\{F(z):|z|=1\}$ possesses an interior point. In 1945, Salem and Zygmund proved that $\gamma_0\in(0,1/2]$, and asked for the value of $\gamma_0$. It is proved in this paper that $\gamma_0=1/2$.
@article{SM_1991_70_2_a9,
     author = {A. S. Belov},
     title = {A~problem of {Salem} and {Zygmund} on the smoothness of an analytic function that generated {a~Peano} curve},
     journal = {Sbornik. Mathematics},
     pages = {485--497},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - A~problem of Salem and Zygmund on the smoothness of an analytic function that generated a~Peano curve
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 485
EP  - 497
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/
LA  - en
ID  - SM_1991_70_2_a9
ER  - 
%0 Journal Article
%A A. S. Belov
%T A~problem of Salem and Zygmund on the smoothness of an analytic function that generated a~Peano curve
%J Sbornik. Mathematics
%D 1991
%P 485-497
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/
%G en
%F SM_1991_70_2_a9
A. S. Belov. A~problem of Salem and Zygmund on the smoothness of an analytic function that generated a~Peano curve. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 485-497. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/