A~problem of Salem and Zygmund on the smoothness of an analytic function that generated a~Peano curve
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 485-497
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\gamma_0$ denote the supremum of the numbers $\gamma\in(0,1)$ for which there is a function $F\in\operatorname{Lip}\gamma$ on the closed unit disk $D=\{z:|z|\leqslant 1\}$ such that $F$ is analytic inside $D$ and the set $\{F(z):|z|=1\}$ possesses an interior point. In 1945, Salem and Zygmund proved that $\gamma_0\in(0,1/2]$, and asked for the value of $\gamma_0$. It is proved in this paper that $\gamma_0=1/2$.
@article{SM_1991_70_2_a9,
author = {A. S. Belov},
title = {A~problem of {Salem} and {Zygmund} on the smoothness of an analytic function that generated {a~Peano} curve},
journal = {Sbornik. Mathematics},
pages = {485--497},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/}
}
TY - JOUR AU - A. S. Belov TI - A~problem of Salem and Zygmund on the smoothness of an analytic function that generated a~Peano curve JO - Sbornik. Mathematics PY - 1991 SP - 485 EP - 497 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/ LA - en ID - SM_1991_70_2_a9 ER -
A. S. Belov. A~problem of Salem and Zygmund on the smoothness of an analytic function that generated a~Peano curve. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 485-497. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/