A problem of Salem and Zygmund on the smoothness of an analytic function that generated a Peano curve
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 485-497
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\gamma_0$ denote the supremum of the numbers $\gamma\in(0,1)$ for which there is a function $F\in\operatorname{Lip}\gamma$ on the closed unit disk $D=\{z:|z|\leqslant 1\}$ such that $F$ is analytic inside $D$ and the set $\{F(z):|z|=1\}$ possesses an interior point. In 1945, Salem and Zygmund proved that $\gamma_0\in(0,1/2]$, and asked for the value of $\gamma_0$. It is proved in this paper that $\gamma_0=1/2$.
@article{SM_1991_70_2_a9,
author = {A. S. Belov},
title = {A~problem of {Salem} and {Zygmund} on the smoothness of an analytic function that generated {a~Peano} curve},
journal = {Sbornik. Mathematics},
pages = {485--497},
year = {1991},
volume = {70},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/}
}
A. S. Belov. A problem of Salem and Zygmund on the smoothness of an analytic function that generated a Peano curve. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 485-497. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a9/
[1] Salem R., Zygmund A., “Lacunary power series and Peano curves”, Duke Math. J., 12:4 (1945), 569–578 | DOI | MR | Zbl
[2] Kahane J.-P., Weiss G., Weiss M., “On lacunary power series”, Arkiv för Matem., 5:1 (1963), 1–26 | DOI | MR | Zbl
[3] Belov A. S., “Stepennye ryady i krivye Peano”, Izv. AN SSSR. Ser. matem., 49:4 (1985), 675–704 | MR | Zbl