On the smoothness of the solutions of multidimensional weakly singular integral equations
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 585-600 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates are given for the derivatives of solutions of the integral equation $$ u(x)=\int_GK(x,y)u(y)\,dy+f(x), \qquad x\in G, $$ where $G\subset R^n$ is an open bounded set, the kernel $K(x,y)$ has continuous derivatives up to order $m$ on $(G\times G)\setminus\{x=y\}$, and there exists a $\nu(-\infty<\nu such that \begin{gather*} \biggl|\biggl(\frac\partial{\partial x_1}\biggr)^{\alpha_1}\dotsb\biggl(\frac\partial{\partial x_n}\biggr)^{\alpha_n}\biggl(\frac\partial{\partial x_1}+\frac\partial{\partial y_1}\biggr)^{\beta_1}\dotsb\biggl(\frac\partial{\partial x_n}+\frac\partial{\partial y_n}\biggr)^{\beta_n}K(x,y)\biggr| \\ \leqslant c \begin{cases} 1+|x-y|^{-\nu-|\alpha|},&\nu+|\alpha|\ne0, \\ 1+|\ln|x-y||,&\nu+|\alpha|=0, \end{cases} \qquad |\alpha|+|\beta|\leqslant m. \end{gather*} Two weighted function classes are distinguished such that if the free term $f$ is in one of them, so is the solution. The main qualitative consequence is that the tangential derivatives of a solution behave essentially better than the normal derivatives when $f$ is smooth. Figures: 4. Bibliography: 13 titles.
@article{SM_1991_68_2_a12,
     author = {G. M. Vainikko},
     title = {On the smoothness of the solutions of multidimensional weakly singular integral equations},
     journal = {Sbornik. Mathematics},
     pages = {585--600},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a12/}
}
TY  - JOUR
AU  - G. M. Vainikko
TI  - On the smoothness of the solutions of multidimensional weakly singular integral equations
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 585
EP  - 600
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a12/
LA  - en
ID  - SM_1991_68_2_a12
ER  - 
%0 Journal Article
%A G. M. Vainikko
%T On the smoothness of the solutions of multidimensional weakly singular integral equations
%J Sbornik. Mathematics
%D 1991
%P 585-600
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a12/
%G en
%F SM_1991_68_2_a12
G. M. Vainikko. On the smoothness of the solutions of multidimensional weakly singular integral equations. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 585-600. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a12/

[1] Richter G. R., “On weakly singular Fredholm integral equations with displacement kernels”, J. Math. Anal. and Appl., 55 (1976), 32–42 | DOI | MR | Zbl

[2] Schneider C., “Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind”, Integr. Equat. and Oper. Th., 2 (1979), 62–68 | DOI | MR | Zbl

[3] Pedas A., “O gladkosti resheniya integralnogo uravneniya so slabo-singulyarnym yadrom”, Uchen. zap. Tartusk. un-ta, 1979, no. 492, 33–42 | Zbl

[4] Vainikko G., Pedas A., “The properties of solutions of weakly singular integral equations”, J. Austral. Math. Soc. Ser. B, 22 (1981), 419–430 | DOI | MR | Zbl

[5] Graham I. G., “Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels”, J. Integr. Equat., 4:1 (1982), 1–30 | MR | Zbl

[6] Vainikko G., Pedas A., Uba P., Metody resheniya slabo-singulyarnykh integralnykh uravnenii, Izd-vo Tartusk. un-ta, Tartu, 1984 | MR

[7] Pitkaranta J., “Estimates for derivatives of solutions to weakly singular Fredholm integral equations”, SIAM J. Math. Anal., 11:6 (1980), 962–968 | DOI | MR

[8] Pitkaranta J., “On the differential properties of solutions to Fredholm equations with weakly singular kerneis”, J. Inst. Math. Appl., 24 (1979), 109–119 | DOI | MR

[9] Tribel X., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[10] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[11] Vainikko G. M., “O gladkosti resheniya mnogomernykh integralnykh uravnenii perenosa”, Chislennye metody resheniya uravneniya perenosa (tez. semin.), AN ESSR, Tartu, 1986, 40–43

[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[13] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl