On the smoothness of the solutions of multidimensional weakly singular integral equations
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 585-600
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates are given for the derivatives of solutions of the integral equation
$$
u(x)=\int_GK(x,y)u(y)\,dy+f(x), \qquad x\in G,
$$
where $G\subset R^n$ is an open bounded set, the kernel $K(x,y)$ has continuous derivatives up to order $m$ on $(G\times G)\setminus\{x=y\}$, and there exists a $\nu(-\infty\nu$ such that
\begin{gather*}
\biggl|\biggl(\frac\partial{\partial x_1}\biggr)^{\alpha_1}\dotsb\biggl(\frac\partial{\partial x_n}\biggr)^{\alpha_n}\biggl(\frac\partial{\partial x_1}+\frac\partial{\partial y_1}\biggr)^{\beta_1}\dotsb\biggl(\frac\partial{\partial x_n}+\frac\partial{\partial y_n}\biggr)^{\beta_n}K(x,y)\biggr|
\\
\leqslant c
\begin{cases}
1+|x-y|^{-\nu-|\alpha|},\nu+|\alpha|\ne0,
\\
1+|\ln|x-y||,\nu+|\alpha|=0,
\end{cases}
\qquad |\alpha|+|\beta|\leqslant m.
\end{gather*}
Two weighted function classes are distinguished such that if the free term $f$ is in one of them, so is the solution. The main qualitative consequence is that the tangential derivatives of a solution behave essentially better than the normal derivatives when $f$ is smooth.
Figures: 4.
Bibliography: 13 titles.
@article{SM_1991_68_2_a12,
author = {G. M. Vainikko},
title = {On the smoothness of the solutions of multidimensional weakly singular integral equations},
journal = {Sbornik. Mathematics},
pages = {585--600},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a12/}
}
G. M. Vainikko. On the smoothness of the solutions of multidimensional weakly singular integral equations. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 585-600. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a12/