On the uniqueness of trigonometric series
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 325-338
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that
\begin{equation}
\frac {a_0}2+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)=\sum_{n=0}^\infty A_n(x)
\end{equation}
is the Fourier series of an integrable function $f(x)$ if and only if
1) $\lim\limits_{h\to0}S(x,h)=f(x)$ almost everywhere, and
2) $\lim\limits_{\lambda\to\infty}\inf\lambda\mu\{x\in[0,2\pi]\colon S^\ast(x)>\lambda\}=0$,
where $S(x,h)=\sum\limits_{n=0}^\infty A_n(x)\biggl(\dfrac{\sin nh}{nh}\biggr)^2$ and $S^\ast(x)=\sup\limits_{h>0}|S(x,h)|$.
Bibliography: 6 titles.
@article{SM_1991_68_2_a1,
author = {G. G. Gevorkyan},
title = {On the uniqueness of trigonometric series},
journal = {Sbornik. Mathematics},
pages = {325--338},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a1/}
}
G. G. Gevorkyan. On the uniqueness of trigonometric series. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 325-338. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a1/