On the uniqueness of trigonometric series
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 325-338

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that \begin{equation} \frac {a_0}2+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)=\sum_{n=0}^\infty A_n(x) \end{equation} is the Fourier series of an integrable function $f(x)$ if and only if 1) $\lim\limits_{h\to0}S(x,h)=f(x)$ almost everywhere, and 2) $\lim\limits_{\lambda\to\infty}\inf\lambda\mu\{x\in[0,2\pi]\colon S^\ast(x)>\lambda\}=0$, where $S(x,h)=\sum\limits_{n=0}^\infty A_n(x)\biggl(\dfrac{\sin nh}{nh}\biggr)^2$ and $S^\ast(x)=\sup\limits_{h>0}|S(x,h)|$. Bibliography: 6 titles.
@article{SM_1991_68_2_a1,
     author = {G. G. Gevorkyan},
     title = {On the uniqueness of trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {325--338},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On the uniqueness of trigonometric series
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 325
EP  - 338
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a1/
LA  - en
ID  - SM_1991_68_2_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On the uniqueness of trigonometric series
%J Sbornik. Mathematics
%D 1991
%P 325-338
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a1/
%G en
%F SM_1991_68_2_a1
G. G. Gevorkyan. On the uniqueness of trigonometric series. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 325-338. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a1/