The mechanism of destruction of resonance tori of Hamiltonian systems
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 181-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the KAM theory most of the nonresonant invariant tori of a nondegenerate integrable Hamiltonian system are preserved under a small perturbation of the Hamiltonian. On the other hand, Poincaré's theorem states that the invariant tori of the unperturbed system, foliated by periodic solutions, are not completely scattered under a perturbation: as a rule, several periodic solutions are preserved and become nondegenerate. This paper fills out the gap between these two results. Namely, it is shown here that the resonant tori of an integrable Hamiltonian system that are fibered in more than one-dimensional ergodic components are not completely destroyed under a small perturbation of the Hamiltonian: as a rule, several of their nonresonant subtori are preserved and become hyperbolic. In concrete systems it is shown that there exist a large number of hyperbolic systems, and that this effect is an obstruction for the integrability of these systems. Bibliography: 16 titles.
@article{SM_1991_68_1_a9,
     author = {D. V. Treshch\"ev},
     title = {The mechanism of destruction of resonance tori of {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {181--203},
     year = {1991},
     volume = {68},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a9/}
}
TY  - JOUR
AU  - D. V. Treshchëv
TI  - The mechanism of destruction of resonance tori of Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 181
EP  - 203
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a9/
LA  - en
ID  - SM_1991_68_1_a9
ER  - 
%0 Journal Article
%A D. V. Treshchëv
%T The mechanism of destruction of resonance tori of Hamiltonian systems
%J Sbornik. Mathematics
%D 1991
%P 181-203
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a9/
%G en
%F SM_1991_68_1_a9
D. V. Treshchëv. The mechanism of destruction of resonance tori of Hamiltonian systems. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 181-203. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a9/

[1] Kolmogorov A. N., “O sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, DAN SSSR, 98:4 (1954), 527–530 | MR | Zbl

[2] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:6 (1963), 91–192 | MR | Zbl

[3] Mozer Yu., “O razlozhenii uslovno-periodicheskikh reshenii v skhodyaschiesya stepennye ryady”, UMN, 24:2 (1969), 165–211 | MR

[4] Puankare A., Izbrannye trudy, t. 1, Nauka, M., 1971

[5] Graff S. M., “On the conservation of hyperbolic tori for Hamiltonian systems”, J. Differ. Equat., 15:1 (1974), 1–69 | DOI | MR | Zbl

[6] Melnikov V. K., “O nekotorykh sluchayakh sokhraneniya uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, DAN SSSR, 165:6 (1965), 1245–1248 | MR | Zbl

[7] Melnikov V. K., “Ob odnom semeistve uslovno-periodicheskikh reshenii sistemy Gamiltona”, DAN SSSR, 181:3 (1968), 546–549 | MR | Zbl

[8] Zehnder E., “An Implicit Function Theorem for Small Divisor Problems”, Bull. Amer. Math. Soc., 80:1 (1974), 174–179 | DOI | MR | Zbl

[9] Zehnder E., “Generalized Implicit Function Theorems with Applications to Some Small Divisor Problems. I”, Comm. Pure Appl. Math., 28:1 (1975), 91–140 | MR | Zbl

[10] Zehnder E., “Generalized Implicit Function Theorems with Applications to Some Small Divisor Problems. II”, Comm. Pure Appl. Math., 29:1 (1976), 49–111 | DOI | MR | Zbl

[11] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[12] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[13] Kozlov V. V., Treschev D. V., “Ob integriruemosti gamiltonovykh sistem s toricheskim prostranstvom polozhenii”, Matem. sb., 135(177) (1988), 119–138

[14] Stepin A. M., “Integriruemye gamiltonovy sistemy”, Kachestvennye metody issledovaniya nelineinykh differentsialnykh uravnenii i nelineinykh kolebanii, In-t matematiki AN USSR, Kiev, 1981, 116–143 | MR

[15] Adler M., van Moerbeke P., “Kowalewskis Asymptotic Method, Kac–Moody Lie Algebras and Regularization”, Commun. Math. Phys., 83 (1982), 83–106 | DOI | MR | Zbl

[16] Dieudonne J., Treatise of Analysis, Academic Press, New York, 1969 | MR | Zbl