Some properties of the tubular minimal surfaces of arbitrary codimension
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 133-150
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A tubular surface is an immersion $u\colon M\to\mathbf R^n$ for which the section $\Pi\cap u(M)$ by an arbitrary hyperplane $\Pi$ orthogonal to a fixed vector $e\in\mathbf R^n$ is a compact set.
For tubular minimal surfaces in $\mathbf R^n$ we prove that
(a) if $\dim M=2$  and $u(M)$ lies in a half-space, then $u(M)$ also lies in some hyperplane; and
(b) if $\dim M\geqslant3$, then a tubular minimal surface lies in the layer between two hyperplanes orthogonal to $e$.
We obtain the corresponding results about the structure of the Gaussian image of two-dimensional tubular minimal surfaces.
The case $\operatorname{codim}M=1$ was investigated earlier (RZh.Mat., 1987, 2 B 807).
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_1991_68_1_a6,
     author = {V. M. Miklyukov and V. G. Tkachev},
     title = {Some properties of the tubular minimal surfaces of arbitrary codimension},
     journal = {Sbornik. Mathematics},
     pages = {133--150},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a6/}
}
                      
                      
                    V. M. Miklyukov; V. G. Tkachev. Some properties of the tubular minimal surfaces of arbitrary codimension. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 133-150. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a6/
