Some properties of the tubular minimal surfaces of arbitrary codimension
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 133-150

Voir la notice de l'article provenant de la source Math-Net.Ru

A tubular surface is an immersion $u\colon M\to\mathbf R^n$ for which the section $\Pi\cap u(M)$ by an arbitrary hyperplane $\Pi$ orthogonal to a fixed vector $e\in\mathbf R^n$ is a compact set. For tubular minimal surfaces in $\mathbf R^n$ we prove that (a) if $\dim M=2$ and $u(M)$ lies in a half-space, then $u(M)$ also lies in some hyperplane; and (b) if $\dim M\geqslant3$, then a tubular minimal surface lies in the layer between two hyperplanes orthogonal to $e$. We obtain the corresponding results about the structure of the Gaussian image of two-dimensional tubular minimal surfaces. The case $\operatorname{codim}M=1$ was investigated earlier (RZh.Mat., 1987, 2 B 807). Bibliography: 19 titles.
@article{SM_1991_68_1_a6,
     author = {V. M. Miklyukov and V. G. Tkachev},
     title = {Some properties of the tubular minimal surfaces of arbitrary codimension},
     journal = {Sbornik. Mathematics},
     pages = {133--150},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a6/}
}
TY  - JOUR
AU  - V. M. Miklyukov
AU  - V. G. Tkachev
TI  - Some properties of the tubular minimal surfaces of arbitrary codimension
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 133
EP  - 150
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a6/
LA  - en
ID  - SM_1991_68_1_a6
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%A V. G. Tkachev
%T Some properties of the tubular minimal surfaces of arbitrary codimension
%J Sbornik. Mathematics
%D 1991
%P 133-150
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a6/
%G en
%F SM_1991_68_1_a6
V. M. Miklyukov; V. G. Tkachev. Some properties of the tubular minimal surfaces of arbitrary codimension. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 133-150. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a6/