Duck trajectories of relaxation systems connected with violation of the normal switching conditions
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 291-301

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that for $x\in R$ and $y\in R^2$ at an isolated point of discontinuity of the relaxation system $$ \varepsilon\dot x=f(x,y),\quad\dot y=g(x,y),\qquad0\varepsilon\ll1, $$ the so-called normal switching condition is violated generically. Under this assumption a theorem on the existence and the asymptotic properties of two structurally stable duck trajectories is proved. Their role in the dynamics of relaxation systems is stressed. Bibliography: 6 titles.
@article{SM_1991_68_1_a14,
     author = {A. Yu. Kolesov},
     title = {Duck trajectories of relaxation systems connected with violation of the normal switching conditions},
     journal = {Sbornik. Mathematics},
     pages = {291--301},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a14/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
TI  - Duck trajectories of relaxation systems connected with violation of the normal switching conditions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 291
EP  - 301
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a14/
LA  - en
ID  - SM_1991_68_1_a14
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%T Duck trajectories of relaxation systems connected with violation of the normal switching conditions
%J Sbornik. Mathematics
%D 1991
%P 291-301
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a14/
%G en
%F SM_1991_68_1_a14
A. Yu. Kolesov. Duck trajectories of relaxation systems connected with violation of the normal switching conditions. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 291-301. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a14/