Duck trajectories of relaxation systems connected with violation of the normal switching conditions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 291-301
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Assume that for $x\in R$ and $y\in R^2$ at an isolated point of discontinuity of the relaxation system
$$
\varepsilon\dot x=f(x,y),\quad\dot y=g(x,y),\qquad0\varepsilon\ll1,
$$
the so-called normal switching condition is violated generically. Under this assumption a theorem on the existence and the asymptotic properties of two structurally stable duck trajectories is proved. Their role in the dynamics of relaxation systems is stressed.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1991_68_1_a14,
     author = {A. Yu. Kolesov},
     title = {Duck trajectories of relaxation systems connected with violation of the normal switching conditions},
     journal = {Sbornik. Mathematics},
     pages = {291--301},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a14/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Kolesov TI - Duck trajectories of relaxation systems connected with violation of the normal switching conditions JO - Sbornik. Mathematics PY - 1991 SP - 291 EP - 301 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a14/ LA - en ID - SM_1991_68_1_a14 ER -
A. Yu. Kolesov. Duck trajectories of relaxation systems connected with violation of the normal switching conditions. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 291-301. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a14/
