Quasiconformal homotopies of elementary space mappings
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 205-212
Cet article a éte moissonné depuis la source Math-Net.Ru
This article takes up the problem of a quasiconformal homotopy to the identity quasiconformal space mapping for the model case of an elementary piecewise-affine mapping of a simplex. In view here are continuous orientation-preserving mappings of the simplex that are affine on its boundary and in each simplex of the decomposition obtained by adding a single new vertex inside the original simplex. It is proved that an arbitrary elementary piecewise-affine mapping of the simplex admits a quasiconformal homotopy to the identity mapping. The proof is based on the following assertion: the smallest coefficient of quasiconformality in the class of all elementary piecewise-affine mappings of the simplex that coincide on its boundary with some affine mapping belongs to this affine mapping. This result can be regarded as a multidimensional analogue of the classical Grötzsch problem on an extremal mapping of rectangles that deviates least from a conformal mapping. Bibliography: 4 titles.
@article{SM_1991_68_1_a10,
author = {I. V. Abramov and E. A. Roganov},
title = {Quasiconformal homotopies of elementary space mappings},
journal = {Sbornik. Mathematics},
pages = {205--212},
year = {1991},
volume = {68},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a10/}
}
I. V. Abramov; E. A. Roganov. Quasiconformal homotopies of elementary space mappings. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 205-212. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a10/
[1] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[2] Strebel K., “Zur frage der eindeutigkeit extremaler quasikonformer abbildtmgen des einheitskreises”, Comm. Math. Helv., 36 (1962), 306–323 | DOI | MR | Zbl
[3] Reich E., Strebel K., “On the extremality of certain teihmuller mappings”, Comm. Math. Helv., 45 (1970), 353–362 | DOI | MR | Zbl
[4] Reich E., “On extremality and uniqe extremality of affine mappings”, Lect. Not. Math., 1974, no. 419, 294–304 | DOI | MR | Zbl