On the dependence of the properties of the set of points of discontinuity
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 427-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $c_\alpha(f)=\varliminf_{n\to\infty}nH_\alpha E_n(f)$, where $H_\alpha E_n(f)$ is the smallest deviation of a $2\pi$-periodic function $f$ from trigonometric polynomials of order $\leqslant n$ in the Hausdorff $\alpha$-metric. It is shown that for arbitrary $\alpha>0$ there exists a function $f_\alpha$ such that $c_\alpha(f_\alpha)=\pi/2\alpha$ and the set of points of discontinuity of $f_\alpha$ has Hausdorff dimension $1$. The concept of the $\sigma$-equiporosity coefficient $R(E)$ of a set $E$ is introduced, and a best possible lower estimate is obtained for the $\sigma$-equiporosity coefficient of the set $D(f)$ of points of discontinuity of a function $f$ in terms of the quantity $c_\alpha(f)$, $\pi/2\alpha\leqslant c_\alpha(f)\leqslant\pi/\alpha$: $$ R(D(f))\geqslant\frac{2(\pi-\alpha c_\alpha(f))}{3\pi-2\alpha c_\alpha(f)}. $$ Dolzhenko, Sevast'yanov, Petrushev, and Tashev proved earlier that the condition $c_\alpha(f)<\pi/\alpha$ implies that $f$ is continuous almost everywhere, and $c_\alpha(f)<\pi/2\alpha$ implies continuity at all points. Petrushev and Tashev constructed an example of a discontinuous function $f$ for which $c_\alpha(f)=\pi/2\alpha$, but, in contrast to the example mentioned above, $f$ had only one point of discontinuity on a period. Bibliography: 11 titles.
@article{SM_1990_67_2_a6,
     author = {A. P. Petukhov},
     title = {On the dependence of the properties of the set of points of discontinuity},
     journal = {Sbornik. Mathematics},
     pages = {427--447},
     year = {1990},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a6/}
}
TY  - JOUR
AU  - A. P. Petukhov
TI  - On the dependence of the properties of the set of points of discontinuity
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 427
EP  - 447
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a6/
LA  - en
ID  - SM_1990_67_2_a6
ER  - 
%0 Journal Article
%A A. P. Petukhov
%T On the dependence of the properties of the set of points of discontinuity
%J Sbornik. Mathematics
%D 1990
%P 427-447
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a6/
%G en
%F SM_1990_67_2_a6
A. P. Petukhov. On the dependence of the properties of the set of points of discontinuity. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 427-447. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a6/

[1] Dolzhenko E. P., Sevastyanov E. A., “O priblizhenii funktsii v khausdorfovoi metrike”, DAN SSSR, 226:4 (1976), 768–770 | MR | Zbl

[2] Dolzhenko E. P., Sevastyanov E. A., “O zavisimosti svoistv funktsii ot skorosti ikh priblizheniya polinomami”, Izv. AN SSSR. Ser. matem., 42 (1978), 270–304 | Zbl

[3] Petrushev P., Tashev S., “Nekotorye obratnye teoremy v metrike Khausdorfa”, Dokl. Bolg. AN., 29 (1976), 1721–1724 | Zbl

[4] Ermakov L. I., “Nailuchshie khausdorfovy priblizheniya algebraicheskimi polinomami i nepreryvnost funktsii”, Matem. zametki, 28:6 (1980), 843–858 | MR | Zbl

[5] Petukhov A. P., “O povedenii naimenshikh polinomialnykh khausdorfovykh uklonenii ot $2$-periodicheskoi funktsii”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1985, no. 3, 11–15 | MR | Zbl

[6] Petukhov A. P., “O priblizhenii razryvnykh funktsii v metrike Khausdorfa”, Matem. zametki, 37:1 (1985), 25–40 | MR | Zbl

[7] Petukhov A. P., “Ob uzhakh i priblizhenii razryvnykh funktsii v metrike Khausdorfa”, Analysis Math., 11 (1985), 55–73 | DOI | MR | Zbl

[8] Ermakov A. I., “O skorosti khausdorfovykh priblizhenii razryvnykh funktsii algebraicheskimi polinomami”, Geometricheskie voprosy teorii funktsii i mnozhestv, Izd-vo KGU, Kalinin, 1985, 46–62 | MR

[9] Dolzhenko E. P., “Granichnye svoistva proizvolnykh funktsii”, Izv. AN SSSR. Ser. matem., 31 (1967), 3–14 | Zbl

[10] Beardon A. F., “On the Hausdorff dimension of general Cantor sets”, Proc. Cambrige Phil. Soc., 61 (1965), 679–694 | DOI | MR | Zbl

[11] Zajiček L., “Sets $\sigma$-porosity and sets of $\sigma$-porosity $(Q)$”, Casopis pro pestovani matematiky, 101 (1976), 350–359 | MR | Zbl