On minimal models of algebraic curves
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 65-74
Cet article a éte moissonné depuis la source Math-Net.Ru
Let be an odd prime number. Consider the algebraic curves (normalizations of their projective closures): $$ x^p+y^p=1, \qquad y^p=x^s(1-x), \quad s=1,\dots,p-2. $$ Let $\zeta$ be a primitive $p$th root of $1$. The Galois group $\operatorname{Gal}(\mathbf Q_p(\zeta)/\mathbf Q_p)$ acts on the minimal models of these curves over $\mathbf Z_p(\zeta)$. This idea is used here to study their minimal models over $\mathbf Z_p$. The action of $\operatorname{Gal}(\mathbf Q_p(\zeta)/\mathbf Q_p)$, passage to the quotient modulo this action, the resolution of singularities on the quotients, and the contraction of exceptional curves of genus $1$ are described. All of this leads to minimal models of the indicated curves over $\mathbf Z_p$. Bibliography: 6 titles.
@article{SM_1990_67_1_a3,
author = {Nguyen Khac Viet},
title = {On minimal models of algebraic curves},
journal = {Sbornik. Mathematics},
pages = {65--74},
year = {1990},
volume = {67},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a3/}
}
Nguyen Khac Viet. On minimal models of algebraic curves. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a3/
[1] McCallum W., “The degenerate fibre of the Fermat curve”, Number theory related to the Fermat's last theorem, Birkhauser, 1982, 57–70 | MR
[2] Shafarevich I. R., Lectures on minimal models, Bombay, 1966
[3] Delign P., Katz N., “Groupes de monodromie en Geometrie Algebrique (SGA7 II)”, Lect. Notes in Math., 340 (1973), 1–38 | DOI | Zbl
[4] Delin P., Mamford D., “Neprivodimost mnogoobraziya krivykh zadannogo roda”, Matematika, 16:3 (1972), 13–53 | Zbl
[5] Parshin A. N., “Minimalnye modeli krivykh roda $2$ i gomomorfizmy abelevykh mnogoobrazii, opredelennykh nad polem konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 36 (1972), 67–109 | Zbl
[6] Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR