@article{SM_1990_67_1_a10,
author = {A. P. Laurincikas},
title = {A limit theorem for the {Riemann} {Zeta-function} close to the critical {line.~II}},
journal = {Sbornik. Mathematics},
pages = {177--193},
year = {1990},
volume = {67},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a10/}
}
A. P. Laurincikas. A limit theorem for the Riemann Zeta-function close to the critical line. II. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 177-193. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a10/
[1] Laurinchikas A. P., “Predelnaya teorema dlya dzeta-funktsii Rimana vblizi kriticheskoi pryamoi”, Matem. sb., 135(177) (1988), 3–11 | MR
[2] Laurinchikas A. P., “Predelnaya teorema dlya dzeta-funktsii Rimana na kriticheskoi pryamoi. I”, Lit. matem. sb., XXVIII:1 (1987), 113–132 | MR
[3] Gabriel R. M., “Some results conserning the integrals of moduli of regular functions along certain curves”, J. London Math. Soc., 11 (127), 112–117
[4] Heath-Brown D. R., “Fractional moments of the Riemann zeta-function”, J. London Math. Soc., 24(2):1 (1981), 65–78 | DOI | MR | Zbl
[5] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR
[6] Elliott P. D. T. A., “On the distribution of $\operatorname{arg}L(s,\chi)$ in the half-plane $\sigma>1/2$”, Acta arith, XX (1972), 155–169 | MR
[7] Laurinchikas A., “Raspredelenie znachenii kompleksnoznachnykh funktsii”, Lit. matem. sb., XV:2 (1975), 25–39 | MR