A limit theorem for the Riemann Zeta-function close to the critical line.~II
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 177-193
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Delta_T\to\infty$, $\Delta_T\leq\ln T$, and $\psi_T\to\infty,\ \ln\psi_T=o(\ln\Delta_T)$, as $T\to\infty$, and let $\displaystyle\sigma_T=\frac12+\frac{\psi_T\sqrt{\ln\Delta_T}}{\Delta_T}$. In this paper we study the asymptotic behavior of the Riemann $\zeta$-function on the vertical lines $\sigma_T+it$. We prove that the distribution function
$$
\frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|(2^{-1}\ln\Delta_T)^{-1/2}\},
$$
converges to a logarithmic normal law distribution function as $T\to\infty$, and that, if $\exp\{\Delta_T\}\leqslant(\ln T)^{\frac23}$, then the measure
$$
\frac1T\operatorname{mes}\{t\in[0,T],\ \zeta(\sigma_T+it)(2^{-1}\ln\Delta_T)^{-1/2}\in A\}, \quad A\in\mathscr B(C),
$$
is weakly convergent to a nonsingular measure.
The proof of the first assertion uses the method of moments, and that of the second uses the method of characteristic transformations.
Bibliography: 8 titles
@article{SM_1990_67_1_a10,
author = {A. P. Laurincikas},
title = {A limit theorem for the {Riemann} {Zeta-function} close to the critical {line.~II}},
journal = {Sbornik. Mathematics},
pages = {177--193},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a10/}
}
A. P. Laurincikas. A limit theorem for the Riemann Zeta-function close to the critical line.~II. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 177-193. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a10/