Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 555-570

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak G$ be a finite-dimensional restricted Lie algebra over an algebraically closed field of characteristic $p>0$. It is proved that any two Cartan subalgebras with maximal toral part in $\mathfrak G$ can be obtained from each other by means of a finite chain of elementary transformations that are similar in form to the exponents of the inner root derivations of $\mathfrak G$. The following theorem plays an important role in the proof: Theorem. {\it Let $s$ be a toral rank of $\mathfrak G$ and $e_1,\dots,e_n$ a basis of $\mathfrak G$. There exists $\nu\in\mathbf Z_+$ and homogeneous polynomials $f_0,\dots,f_{s-1},$ in $n$ variables$,$ such that $$ x^{[p^{s+\nu}]}=\sum_{i=0}^{s-1}f_i(x_1,\dots,x_n)x^{[p^{i+\nu}]} $$ $($here $x=x_1e_1+\dots+x_ne_n$ and $\deg f_i=p^{s+\nu}-p^{i+\nu}).$} Bibliography: 16 titles.
@article{SM_1990_66_2_a15,
     author = {A. A. Premet},
     title = {Regular {Cartan} subalgebras and nilpotent elements in restricted {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {555--570},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/}
}
TY  - JOUR
AU  - A. A. Premet
TI  - Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 555
EP  - 570
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/
LA  - en
ID  - SM_1990_66_2_a15
ER  - 
%0 Journal Article
%A A. A. Premet
%T Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras
%J Sbornik. Mathematics
%D 1990
%P 555-570
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/
%G en
%F SM_1990_66_2_a15
A. A. Premet. Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 555-570. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/