Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 555-570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak G$ be a finite-dimensional restricted Lie algebra over an algebraically closed field of characteristic $p>0$. It is proved that any two Cartan subalgebras with maximal toral part in $\mathfrak G$ can be obtained from each other by means of a finite chain of elementary transformations that are similar in form to the exponents of the inner root derivations of $\mathfrak G$. The following theorem plays an important role in the proof: Theorem. {\it Let $s$ be a toral rank of $\mathfrak G$ and $e_1,\dots,e_n$ a basis of $\mathfrak G$. There exists $\nu\in\mathbf Z_+$ and homogeneous polynomials $f_0,\dots,f_{s-1},$ in $n$ variables$,$ such that $$ x^{[p^{s+\nu}]}=\sum_{i=0}^{s-1}f_i(x_1,\dots,x_n)x^{[p^{i+\nu}]} $$ $($here $x=x_1e_1+\dots+x_ne_n$ and $\deg f_i=p^{s+\nu}-p^{i+\nu}).$} Bibliography: 16 titles.
@article{SM_1990_66_2_a15,
     author = {A. A. Premet},
     title = {Regular {Cartan} subalgebras and nilpotent elements in restricted {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {555--570},
     year = {1990},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/}
}
TY  - JOUR
AU  - A. A. Premet
TI  - Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 555
EP  - 570
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/
LA  - en
ID  - SM_1990_66_2_a15
ER  - 
%0 Journal Article
%A A. A. Premet
%T Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras
%J Sbornik. Mathematics
%D 1990
%P 555-570
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/
%G en
%F SM_1990_66_2_a15
A. A. Premet. Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 555-570. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a15/

[1] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965 | MR

[2] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[3] Kuratovskii K., Topologiya, 1, Mir, M., 1966 | MR

[4] Dzhekobson Ya., Algebry Li, Mir, M., 1964 | MR

[5] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[6] Khamfri Dzh., Lineinye algebraicheskie gruppy, Mir, M., 1980

[7] Demushkin S. P., “Podalgebry Kartana prostykh $p$-algebr Li $W_n$ i $S_n$”, Sib. matem. zhurn., 11:2 (1970), 310–325 | Zbl

[8] Demushkin S. P., “Podalgebry Kartana prostykh neklassicheskikh $p$-algebr Li”, Izv. AN SSSR. Ser. matem., 36 (1972), 915–932 | Zbl

[9] Premet A. A., “O podalgebrakh Kartana $p$-algebr Li”, Izv. AN SSSR. Ser. matem., 50 (1986), 788–800 | MR | Zbl

[10] Premet A. A., “Algebry Li bez silnogo vyrozhdeniya”, Matem. sb., 129(171) (1986), 140–153 | MR | Zbl

[11] Premet A. A., “Vnutrennie idealy v modulyarnykh algebrakh Li”, Vestsi AN BSSR. Ser. fiz.-mat. navuk., 1986, no. 5, 11–15 | MR | Zbl

[12] Block R. E., Wolson R. L., “The simple Lie $p$-algebras of rank two”, Ann. Math., 115:1 (1982), 93–168 | DOI | MR | Zbl

[13] Wilson R. L., “Classification of the simple Lie algebras with toral Cartan subalgebras”, J. Algebra., 83:2 (1983), 531–570 | DOI | MR | Zbl

[14] Wilson R. L., “Cartan subalgebras of simple Lie algebras”, Trans. Amer. Math. Soc., 234 (1977), 435–446 | DOI | MR | Zbl

[15] Winter D. J., “On the toral structure of Lie $p$-algebras”, Acta Math., 123 (1969), 70–81 | DOI | MR

[16] Friedlander B. M., Parahall B. J., “Support varieties for restricted Lie algebras”, Invent. math., 86 (1986), 553–562 | DOI | MR | Zbl