Asymptotic completeness in the problem of scattering by a Brownian particle
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 531-559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author studies the three-dimensional Schrödinger equation with potential randomly depending on time: $$ i\frac{\partial\psi}{\partial t}=-\Delta_x\psi+q(x-y(t))\psi;\quad\psi|_{t=0}=\psi_0(x);\quad t\geqslant0. $$ Here $\psi_0\in L_2(\mathbf R^3)$, $q$ is a fixed complex function, $y(t)$ is a sample function of the Wiener process. The main result is the following. Let $\operatorname{Im}q(x)\leqslant0$, $q\in L_2(\mathbf R^3)$ and suppose there exist $R$, $\delta>0$, such that $|q(x)|\leqslant C|x|^{-7/2-\delta}$ for $|x|\geqslant R$. Then for almost all (relative to Wiener measure) $y(\,\cdot\,)$ the solution $\psi(t,y(\,\cdot\,))$ of the above equation has free asymptotics as $t\to+\infty$ for any initial data $\psi_0$ in $L_2(\mathbf R^3)$, i.e. for some $\psi_+$ $$ \lim_{t\to+\infty}\|\psi(t,y(\,\cdot\,))-\exp(-itH_0)\psi_+\|_{L_2(\mathbf R^3)}=0,\qquad H_0=-\Delta_x. $$ Bibliography: 13 titles.
@article{SM_1990_65_2_a12,
     author = {S. E. Cheremshantsev},
     title = {Asymptotic completeness in the problem of scattering by {a~Brownian} particle},
     journal = {Sbornik. Mathematics},
     pages = {531--559},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a12/}
}
TY  - JOUR
AU  - S. E. Cheremshantsev
TI  - Asymptotic completeness in the problem of scattering by a Brownian particle
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 531
EP  - 559
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a12/
LA  - en
ID  - SM_1990_65_2_a12
ER  - 
%0 Journal Article
%A S. E. Cheremshantsev
%T Asymptotic completeness in the problem of scattering by a Brownian particle
%J Sbornik. Mathematics
%D 1990
%P 531-559
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a12/
%G en
%F SM_1990_65_2_a12
S. E. Cheremshantsev. Asymptotic completeness in the problem of scattering by a Brownian particle. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 531-559. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a12/

[1] Enss V., Veselić K., “Bound states and propagating states for time-dependent Hamiltonians”, Ann. Inst. Henri Poincaré. Sec. A, 39:2 (1983), 159–191 | MR | Zbl

[2] Pillet C.-A., “Some results on the quantum dynamics of a particle in a markovian potential”, Comm. Math. Phys., 102:2 (1985), 237–254 | DOI | MR | Zbl

[3] Cheremshantsev S. E., “Ob usrednenii resheniya uravneniya Shredingera s potentsialom, zavisyaschim ot vremeni sluchainym obrazom”, DAN SSSR, 266:3 (1982), 597–601 | MR | Zbl

[4] Cheremshantsev S. E., “Kvantovoe rasseyanie na brounovskoi chastitse s kompleksnym potentsialom”, TMF, 56:1 (1983), 125–130 | MR

[5] Cheremshantsev S. E., Scattering on the Brownian particle., LOMI preprint E-8-86, Leningrad, 1986

[6] Pillet C.-A., “Asymptotic completeness for a quantum particle in a markovian short range potential”, Comm. Math. Phys., 105:2 (1986), 259–280 | DOI | MR | Zbl

[7] Cheremshantsev S. E., Rasseyanie na nestatsionarnykh sluchainykh potentsialakh i spektralnyi analiz nesamosopryazhennogo operatora $H=-\partial_{xx}+iy\partial_{yy}+q(x-y)$, Dis. ... kand. fiz.-mat. nauk, Izd-vo LGU, LGU. L., 1983

[8] Faddeev L. D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. MIAN, 69, 1963 | MR | Zbl

[9] Yajima K., “Existence of solutions for Schrödinger evolution equations”, Comm. Math. Phys., 110:3 (1987), 415–426 | DOI | MR | Zbl

[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[11] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR

[13] Rid R., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982