Asymptotic completeness in the problem of scattering by a~Brownian particle
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 531-559
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author studies the three-dimensional Schrödinger equation with potential randomly depending on time: 
$$
i\frac{\partial\psi}{\partial t}=-\Delta_x\psi+q(x-y(t))\psi;\quad\psi|_{t=0}=\psi_0(x);\quad t\geqslant0.
$$
Here $\psi_0\in L_2(\mathbf R^3)$, $q$ is a fixed complex function, $y(t)$ is a sample function of the Wiener process. The main result is the following. Let $\operatorname{Im}q(x)\leqslant0$, $q\in L_2(\mathbf R^3)$ and suppose there exist $R$, $\delta>0$,  such that $|q(x)|\leqslant C|x|^{-7/2-\delta}$ for $|x|\geqslant R$. Then for almost all (relative to Wiener measure) $y(\,\cdot\,)$ the solution $\psi(t,y(\,\cdot\,))$ of the above equation has free asymptotics as $t\to+\infty$ for any initial data $\psi_0$ in $L_2(\mathbf R^3)$, i.e. for some $\psi_+$
$$
\lim_{t\to+\infty}\|\psi(t,y(\,\cdot\,))-\exp(-itH_0)\psi_+\|_{L_2(\mathbf R^3)}=0,\qquad H_0=-\Delta_x.
$$ Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1990_65_2_a12,
     author = {S. E. Cheremshantsev},
     title = {Asymptotic completeness in the problem of scattering by {a~Brownian} particle},
     journal = {Sbornik. Mathematics},
     pages = {531--559},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a12/}
}
                      
                      
                    S. E. Cheremshantsev. Asymptotic completeness in the problem of scattering by a~Brownian particle. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 531-559. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a12/
