Dynamical systems with an even-mulriplicity Lebesgue component in the spectrum
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 305-317

Voir la notice de l'article provenant de la source Math-Net.Ru

A general construction of ergodic transformations with Lebesgue component of finite multiplicity is proposed. All known examples with this property can be encompassed within the proposed construction. The spectral and combinatorial properties of the transformations are studied. It is shown that the construction permits one to obtain a continuum of spectrally nonisomorphic transformations with even-multiplicity Lebesgue component. As a rule, the transformations have a continuous spectrum. It is proved that continuum many metrically nonisomorphic transformations having the same spectrum are contained in the proposed class. Proof of all the results uses a combinatorial and approximation technique. Figures: 4. Bibliography: 15 titles.
@article{SM_1989_64_2_a0,
     author = {O. N. Ageev},
     title = {Dynamical systems with an even-mulriplicity {Lebesgue} component in the spectrum},
     journal = {Sbornik. Mathematics},
     pages = {305--317},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a0/}
}
TY  - JOUR
AU  - O. N. Ageev
TI  - Dynamical systems with an even-mulriplicity Lebesgue component in the spectrum
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 305
EP  - 317
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a0/
LA  - en
ID  - SM_1989_64_2_a0
ER  - 
%0 Journal Article
%A O. N. Ageev
%T Dynamical systems with an even-mulriplicity Lebesgue component in the spectrum
%J Sbornik. Mathematics
%D 1989
%P 305-317
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a0/
%G en
%F SM_1989_64_2_a0
O. N. Ageev. Dynamical systems with an even-mulriplicity Lebesgue component in the spectrum. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 305-317. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a0/