On a Shirshov basis of relatively free algebras of complexity $n$
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 363-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Shirshov basis is a set of elements of an algebra $A$ over which $A$ has bounded height in the sense of Shirshov. A description is given of Shirshov bases consisting of words for associative or alternative relatively free algebras over an arbitrary commutative associative ring $\Phi$ with unity. It is proved that the set of monomials of degree at most $m^2$ is a Shirshov basis in a Jordan PI-algebra of degree $m$. It is shown that under certain conditions on $\operatorname{var}(B)$ (satisfied by alternative and Jordan PI-algebras), if each factor of $B$ with nilpotent projections of all elements of $M$ is nilpotent, then $M$ is a Shirshov basis of $B$ if $M$ generates $B$ as an algebra. Bibliography: 12 titles.
@article{SM_1989_63_2_a6,
     author = {A. Ya. Belov},
     title = {On {a~Shirshov} basis of relatively free algebras of complexity~$n$},
     journal = {Sbornik. Mathematics},
     pages = {363--374},
     year = {1989},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a6/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - On a Shirshov basis of relatively free algebras of complexity $n$
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 363
EP  - 374
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a6/
LA  - en
ID  - SM_1989_63_2_a6
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T On a Shirshov basis of relatively free algebras of complexity $n$
%J Sbornik. Mathematics
%D 1989
%P 363-374
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a6/
%G en
%F SM_1989_63_2_a6
A. Ya. Belov. On a Shirshov basis of relatively free algebras of complexity $n$. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 363-374. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a6/

[1] Shirshov A. I., “O nekotorykh neassotsiativnykh nil-koltsakh i algebraicheskikh algebrakh”, Matem. sb., 41(83) (1957), 381–394 | Zbl

[2] Shirshov A. I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Matem. sb., 43(85) (1957), 277–283 | Zbl

[3] Ufnarovskii V. A., “Teorema o nezavisimosti i ee sledstviya”, Matem. sb, 128(163) (1985), 124–132 | MR | Zbl

[4] Pchelintsev S. V., “Teorema o vysote dlya alternativnykh algebr”, Matem. sb., 124(166) (1984), 557–567 | MR | Zbl

[5] Shestakov I. P., “Konechno porozhdennye iordanovy i alternativnye PI-algebry”, Matem. sb., 122(144) (1983), 31–40 | MR | Zbl

[6] Medvedev Yu. A., Nil-radikaly konechno porozhdennykh iordanovykh PI-algebr, Preprint No 24, IM SO AN SSSR, Novosibirsk, 1985 | MR

[7] Skosyrskii V. G., Iordanovy algebry s usloviem minimalnosti dlya dvustoronnikh idealov, Preprint No 21, IM SO AN SSSR, Novosibirsk, 1981

[8] Zelmanov E. I., “Absolyutnye deliteli nulya i algebraicheskie iordanovy algebry”, Sib. matem. zhurn., 23:6 (1982), 100–116 | MR

[9] Lvov I. V., K teoreme Shirshova o vysote, Vsesoyuz. simpoz. po teorii kolets, algebr i modulei (tez. dokl.), Izd-vo NGU, Novosibirsk, 1982

[10] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[11] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[12] Lvov I. V., Teorema Brauna o radikale konechno porozhdennoi PI-algebry, Preprint No 63, IM SO AN SSSR, Novosibirsk, 1984