On a~Shirshov basis of relatively free algebras of complexity~$n$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 363-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A Shirshov basis is a set of elements of an algebra $A$ over which $A$ has bounded height in the sense of Shirshov.
A description is given of Shirshov bases consisting of words for associative or alternative relatively free algebras over an arbitrary commutative associative ring $\Phi$ with unity. It is proved that the set of monomials of degree at most $m^2$ is a Shirshov basis in a Jordan PI-algebra of degree $m$. It is shown that under certain conditions on $\operatorname{var}(B)$ (satisfied by alternative and Jordan PI-algebras), if each factor of $B$ with nilpotent projections of all elements of $M$ is nilpotent, then $M$ is a Shirshov basis of $B$ if $M$ generates $B$ as an algebra.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1989_63_2_a6,
     author = {A. Ya. Belov},
     title = {On {a~Shirshov} basis of relatively free algebras of complexity~$n$},
     journal = {Sbornik. Mathematics},
     pages = {363--374},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a6/}
}
                      
                      
                    A. Ya. Belov. On a~Shirshov basis of relatively free algebras of complexity~$n$. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 363-374. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a6/
