Construction of polinomials irreducible over a~finite field with linearly independent roots
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 507-519

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $t\geqslant1$ the author gives a method of constructing a matrix $X$ – the multiplication table for a certain normal basis of the finite field $F_{q^t}$ over $F_q$, where $q$ is a power of a prime $p$. The characteristic polynomial of $X$ is an irreducible polynomial of degree $t$ with coefficients in $F_q$, whose roots are linearly independent over $F_q$. In order to construct the matrix $X$, and thus an irreducible polynomial with linearly independent roots, one needs to perform no more than $O(\max(t^4,r^7\ln t/\ln r))$ additions and multiplications in $F_q$ (where $r$ is the greatest prime divisor of $t$). Bibliography: 3 titles.
@article{SM_1989_63_2_a15,
     author = {I. A. Semaev},
     title = {Construction of polinomials irreducible over a~finite field with linearly independent roots},
     journal = {Sbornik. Mathematics},
     pages = {507--519},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a15/}
}
TY  - JOUR
AU  - I. A. Semaev
TI  - Construction of polinomials irreducible over a~finite field with linearly independent roots
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 507
EP  - 519
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a15/
LA  - en
ID  - SM_1989_63_2_a15
ER  - 
%0 Journal Article
%A I. A. Semaev
%T Construction of polinomials irreducible over a~finite field with linearly independent roots
%J Sbornik. Mathematics
%D 1989
%P 507-519
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a15/
%G en
%F SM_1989_63_2_a15
I. A. Semaev. Construction of polinomials irreducible over a~finite field with linearly independent roots. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 507-519. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a15/