Representation of functions by generalized exponential series
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 491-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f(z)=\sum_0^\infty\frac{a_k}{k!}z^k$ be an entire function of exponential type, $\gamma(t)=\sum_0^\infty\frac{a_k}{t^{k+1}}$; let the singular points of $\gamma(t)$ lie in the disk $|t|\leqslant1$, let $t=1$ be a singular point of $\gamma(t)$. By definition, $f\in A_0$ if every function $\Phi(z)$ that is analytic in a convex domain $D$, $0\in D$, can be represented in the form $\Phi(z)=\sum_1^\infty c_kf(\lambda_kz )$ with $\lim_{k\to \infty}\frac{\ln k}{\lambda_k}=0$. It was established previously that if the singular points of $\gamma(t)$ and of $\gamma_1(t)=\sum_0^\infty\frac1{a_kt^{k+1}}$ lie on $[0,1]$, then $f\in A_0$. The following is now established: under the stated conditions, $f(z)$ is a function of completely regular growth in the half-plane $\operatorname{Re}z\geqslant0$; if $f\in A_0$ and $f(z)$ is of completely regular growth in $\operatorname{Re}z\geqslant0$, then the singular points of $\gamma(t)$ and of $\gamma_1(t)$ lie on $[0,1]$. Bibliography: 8 titles.
@article{SM_1989_62_2_a9,
     author = {A. F. Leont'ev},
     title = {Representation of functions by generalized exponential series},
     journal = {Sbornik. Mathematics},
     pages = {491--505},
     year = {1989},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a9/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - Representation of functions by generalized exponential series
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 491
EP  - 505
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a9/
LA  - en
ID  - SM_1989_62_2_a9
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T Representation of functions by generalized exponential series
%J Sbornik. Mathematics
%D 1989
%P 491-505
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a9/
%G en
%F SM_1989_62_2_a9
A. F. Leont'ev. Representation of functions by generalized exponential series. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 491-505. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a9/

[1] Leontev A. F., “K voprosu o predstavlenii analiticheskikh funktsii ryadami obobschennykh eksponent”, Analysis Math., 12:3 (1986), 213–228 | DOI | MR

[2] Azarin V. S., “Ob odnom kharakteristicheskom svoistve funktsii vpolne regulyarnogo rosta v ugle”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 2, Izd-vo KhGU, Kharkov, 1966, 55–66 | MR

[3] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[4] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[5] Leontev A. F., “Predstavlenie funktsii v vypuklykh oblastyakh obobschennymi ryadami eksponent”, Asta Sci. Math., Szeged, 45 (1983), 305–315 | MR

[6] Leontev A. F., “Usloviya predstavimosti funktsii v vypuklykh oblastyakh obobschennymi ryadami eksponent”, Trudy MIAN, 167, 1985, 216–235 | MR

[7] Leontev A. F., “Ryady tipa eksponent”, Matematicheskie struktury. Vychisl. mat. i matem. modelirovanie, Sofiya, no. 1984, 50–54

[8] Leontev L. F., “O polnote sistemy pokazatelnykh funktsii v krivolineinoi polose”, Matem. sb., 36(78) (1955), 555–568 | MR