Approximation of homogeneous subharmonic functions
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 507-523

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$ be a positive homogeneous subharmonic function, i.e. $$ u(tz)=tu(z),\qquad t>0,\quad z\in\mathbf C, $$ and let $\mu$ be its associated measure. Let the function $\rho(z)$ be such that $$ \mu(\{w\colon|w-z|\rho(z)\})=1. $$ Then there exists an entire function $L$ for which \begin{gather*} |L(z)|\leqslant\exp u(z),\qquad z\in\mathbf C,\\ |L'(a)|\leqslant\exp(u(a)-\ln\rho(a)+O(\ln^\frac45\rho(a)\ln\ln\rho(a))),\qquad L(a)=0. \end{gather*} Bibliography: 6 titles.
@article{SM_1989_62_2_a10,
     author = {R. S. Yulmukhametov},
     title = {Approximation of homogeneous subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {507--523},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a10/}
}
TY  - JOUR
AU  - R. S. Yulmukhametov
TI  - Approximation of homogeneous subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 507
EP  - 523
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a10/
LA  - en
ID  - SM_1989_62_2_a10
ER  - 
%0 Journal Article
%A R. S. Yulmukhametov
%T Approximation of homogeneous subharmonic functions
%J Sbornik. Mathematics
%D 1989
%P 507-523
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a10/
%G en
%F SM_1989_62_2_a10
R. S. Yulmukhametov. Approximation of homogeneous subharmonic functions. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 507-523. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a10/