Approximation of homogeneous subharmonic functions
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 507-523
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u$ be a positive homogeneous subharmonic function, i.e.
$$
u(tz)=tu(z),\qquad t>0,\quad z\in\mathbf C,
$$
and let $\mu$ be its associated measure. Let the function $\rho(z)$ be such that
$$
\mu(\{w\colon|w-z|\rho(z)\})=1.
$$
Then there exists an entire function $L$ for which
\begin{gather*}
|L(z)|\leqslant\exp u(z),\qquad z\in\mathbf C,\\
|L'(a)|\leqslant\exp(u(a)-\ln\rho(a)+O(\ln^\frac45\rho(a)\ln\ln\rho(a))),\qquad L(a)=0.
\end{gather*} Bibliography: 6 titles.
@article{SM_1989_62_2_a10,
author = {R. S. Yulmukhametov},
title = {Approximation of homogeneous subharmonic functions},
journal = {Sbornik. Mathematics},
pages = {507--523},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a10/}
}
R. S. Yulmukhametov. Approximation of homogeneous subharmonic functions. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 507-523. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a10/