An estimate for the number of terms in the Hilbert--Kamke problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 561-590
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $r(n)$ denote the smallest $s$ for which the system of equations 
\begin{equation}
x^j_1+\dots+x^j_s=N_j\qquad(j=1,\dots,n)
\end{equation}
is solvable in nonnegative integers $x_1,\dots,x_s$ for all sufficiently large natural numbers $N_1,\dots,N_n$ which satisfy the following conditions:
1) the singular integral $\gamma=\gamma(N_1,\dots,N_n)$ of the system (1) satisfies the inequality $\gamma\geqslant c(n,s)>0$ (the order conditions).
2) the system of equations $\sum^n_{k=1}k^jt_k=N_j$ $(j=1,\dots,n)$ is solvable in integers $t_1,\dots,t_n$ (the arithmetic conditions).
In 1937, K. K. Mardzhanishvili proved that $n^2\ll r(n)\leqslant n^42^{2n^2-n-2}$. G. I. Arkhipov has recently obtained upper and lower estimates for $r(n)$ having the same order of magnitude: $2^n-1\leqslant r(n)\leqslant3n^32^n-n$ $(n\geqslant5)$.
In this paper, the upper estimate for $r(n)$ is reduced to 
\begin{equation}
r(n)\leqslant\sum_{0\leqslant k\leqslant[\ln n/\ln2]}2^k(2^{[n/2^k]}-1)\qquad(n\geqslant12);
\end{equation}
in particular, the asymptotic formula $r(n)=2^n+O(2^{n/2})$ is obtained. It is conjectured that the estimate (2) is best possible.
Bibliography: 20 titles.
			
            
            
            
          
        
      @article{SM_1987_57_2_a15,
     author = {D. A. Mit'kin},
     title = {An estimate for the number of terms in the {Hilbert--Kamke} problem},
     journal = {Sbornik. Mathematics},
     pages = {561--590},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a15/}
}
                      
                      
                    D. A. Mit'kin. An estimate for the number of terms in the Hilbert--Kamke problem. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 561-590. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a15/
