Generalized Lie nilpotent group rings
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 165-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $KG$ be the group ring of a group $G$ over a ring $K$ with identity. The ring $KG$ is said to be Lie $T$-nilpotent if for every sequence $x_1,x_2,\dots,x_n,\dots$ of elements of $KG$ there is an index $m$ such that the Lie commutator $(\dots((x_1,x_2),x_3)\dots,x_m)=0$. It is proved that $KG$ is a Lie $T$-nilpotent ring if and only if $K$ is Lie $T$-nilpotent and one of the following conditions is satisfied: 1) $G$ is an Abelian group, or 2) $K$ is a ring of characteristic $p^m$ ($p$ prime), $G$ is a nilpotent group and its commutator subgroup is a finite $p$-group. Bibliography: 3 titles.
@article{SM_1987_57_1_a9,
     author = {A. A. Bovdi and I. I. Khripta},
     title = {Generalized {Lie} nilpotent group rings},
     journal = {Sbornik. Mathematics},
     pages = {165--169},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a9/}
}
TY  - JOUR
AU  - A. A. Bovdi
AU  - I. I. Khripta
TI  - Generalized Lie nilpotent group rings
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 165
EP  - 169
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a9/
LA  - en
ID  - SM_1987_57_1_a9
ER  - 
%0 Journal Article
%A A. A. Bovdi
%A I. I. Khripta
%T Generalized Lie nilpotent group rings
%J Sbornik. Mathematics
%D 1987
%P 165-169
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a9/
%G en
%F SM_1987_57_1_a9
A. A. Bovdi; I. I. Khripta. Generalized Lie nilpotent group rings. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 165-169. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a9/