Mixed identities and mixed varieties of groups
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 171-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mixed identity in variables $x_1,x_2,\dots$ over a group $G$ is a word $g_1x_{i_1}^{m_1}\cdots g_kx_{i_k}^{m_k}g_{k+1}$ (where the coefficients $g_1,\dots,g_{k+1}$ lie in $G$, $i_1,\dots,i_k\in\{1,2,\dots\}$, and $m_1,\dots,m_k\in\mathbf Z$) taking the value 1 for any values of the variables in $G$. The concept of a mixed variety of groups is introduced as an object corresponding to a certain set of mixed identities and generalizing the concept of a variety of groups; an analogue of Birkhoff's theorem is proved; minimal mixed varieties generated by a finite group are described; the question of whether the mixed identities of a group can be derived from its identities is studied; and for nilpotent and metabelian groups it is established that all their mixed identities with coefficients in a finitely generated subgroup are finitely based, from which the same property is deduced for the identities of such groups with finitely many distinguished points. Bibliography: 16 titles.
@article{SM_1987_57_1_a10,
     author = {V. S. Anashin},
     title = {Mixed identities and mixed varieties of groups},
     journal = {Sbornik. Mathematics},
     pages = {171--182},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a10/}
}
TY  - JOUR
AU  - V. S. Anashin
TI  - Mixed identities and mixed varieties of groups
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 171
EP  - 182
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a10/
LA  - en
ID  - SM_1987_57_1_a10
ER  - 
%0 Journal Article
%A V. S. Anashin
%T Mixed identities and mixed varieties of groups
%J Sbornik. Mathematics
%D 1987
%P 171-182
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a10/
%G en
%F SM_1987_57_1_a10
V. S. Anashin. Mixed identities and mixed varieties of groups. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 171-182. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a10/

[1] Lausch H., Nöbauer W., Algebra of polynomials, North-HolL, Amsterdam, 1973 | MR | Zbl

[2] Anashin V. S., “Smeshannye tozhdestva v gruppakh”, Matem. zametki, 24:1 (1978), 19–30 | MR | Zbl

[3] Eigenthaler G., Wiesenbauer J., “On the Concept of Length in the Sence of Lausch-Nöbauer and its Generalizations”, J. Austral. Math. Soc., ser. A, 24:2 (1977), 162–169 | DOI | MR | Zbl

[4] Scott S. D., “The Arithmetic of Polynomial Maps over a Group and the Structure of Certain Permutation Polynomial Groups, I”, Monat. Math., 73 (1969), 250–267 | DOI | MR | Zbl

[5] Levin F., Rosenberg G., Generalized power laws, Lect. Notes Math., 806, 1980, p. 246–248 | MR | Zbl

[6] Golubchik I. Z., Mikhalev A. V., “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauch. seminara LOMI, 114 (1982), 96–119 | MR | Zbl

[7] Tomanov G. M., “Obobschennye gruppovye tozhdestva v lineinykh gruppakh”, Matem. sb., 123(165) (1984), 35–49 | MR

[8] Bryant R. M., “The laws of finite pointed groups”, Bull. London Math. Soc., 14:2 (1982), 119–123 | DOI | MR | Zbl

[9] Khan Z. A., A generalization of laws in groups, M. Sc. Thesis Univ. of Manchester, Inst. of Science and Technology, 1976

[10] Anashin V. S., “Polinomy nad gruppami”, 6-i Vsesoyuznyi simpozium po teorii grupp, Naukova dumka, Kiev, 1980, 125–135 | MR

[11] Rowen L. H., Polynomial identities in ring theory, Acad. Press, N.Y., 1980 | MR | Zbl

[12] Guha U. G., Hoo T. K., “On a class of quasigroups”, Ind. J. Math., 7 (1965), 1–8 | MR

[13] Foster A. L., “Identities and subdirect sums of functionally complete algebras”, Math. Zeit., 59:2 (1953), 191–199 | DOI | MR | Zbl

[14] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[15] Cohen D. E., “On the laws of metabelian variety”, J. Algebra, 5 (1967), 267–273 | DOI | MR | Zbl

[16] Krouell R., Foks R., Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR