Bases of admissible rules of the modal system Grz and of intuitionistic logic
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 311-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the free pseudoboolean algebra $F_\omega(\mathrm{Int})$ and the free topoboolean algebra $F_\omega(\mathrm{Grz})$ do not have bases of quasi-identities in a finite number of variables. A corollary is that the intuitionistic propositional logic $\mathrm{Int}$ and the modal system $\mathrm{Grz}$ do not have finite bases of admissible rules. Infinite recursive bases of quasi-identities are found for $F_\omega(\mathrm{Int})$ and $F_\omega(\mathrm{Grz})$. This implies that the problem of admissibility of rules in the logics $\mathrm{Grz}$ and $\mathrm{Int}$ is algorithmically decidable. Bibligraphy: 14 titles.
@article{SM_1987_56_2_a2,
     author = {V. V. Rybakov},
     title = {Bases of admissible rules of the modal system {Grz} and of intuitionistic logic},
     journal = {Sbornik. Mathematics},
     pages = {311--331},
     year = {1987},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a2/}
}
TY  - JOUR
AU  - V. V. Rybakov
TI  - Bases of admissible rules of the modal system Grz and of intuitionistic logic
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 311
EP  - 331
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a2/
LA  - en
ID  - SM_1987_56_2_a2
ER  - 
%0 Journal Article
%A V. V. Rybakov
%T Bases of admissible rules of the modal system Grz and of intuitionistic logic
%J Sbornik. Mathematics
%D 1987
%P 311-331
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a2/
%G en
%F SM_1987_56_2_a2
V. V. Rybakov. Bases of admissible rules of the modal system Grz and of intuitionistic logic. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 311-331. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a2/

[1] Maksimova L. L., Rybakov V. V., “O reshetke normalnykh modalnykh logik”, Algebra i logika, 13 (1974), 188–216 | MR | Zbl

[2] Mints G. E., “Dopustimye i proizvodnye pravila”, Zap. nauch. seminara LOMI, 8, 1968, 189–191 | Zbl

[3] Mints G. E., “Proizvodnost dopustimykh pravil”, Zap. nauch. seminara LOMI, 32, 1972, 85–89 | MR

[4] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972 | MR

[5] Rybakov V. V., “Dopustimye pravila predtablichnykh modalnykh logik”, Algebra i logika, 20:4 (1981), 440–464 | MR | Zbl

[6] Rybakov V. V., “Elementarnye teorii svobodnykh algebr s zamykaniem”, XVI Vsesoyuz. algebr, konferentsiya, ch. 2, tez. dokl., L., 1981, 116

[7] Tsitkin A. I., Pravila vyvoda, dopustimye v superintuitsionistskikh logikakh, Avtoref. dis. na soiskanie uch. st. kand. fiz.-mat. nauk, In-t matem. sVTs AN Mold. SSR, Kishinev, 1979

[8] Tsitkin A. I., “O strukturalno polnykh superintuitsionistskikh logikakh”, DAN SSSR, 241:1 (1978), 40–43 | MR | Zbl

[9] Tsitkin A. I., “O dopustimykh pravilakh intuitsionistskoi logiki vyskazyvanii”, Matem. sb., 102(144) (1977), 314–323 | Zbl

[10] Shekhtman V. B., “Lestnitsy Rigera–Nishimury”, DAN SSSR, 241:6 (1978), 1288–1291 | MR | Zbl

[11] Dummet M. A., Lemmon E. J., “Moda logic between S4 and S5”, Z. Math. Logic und Gr. Math., 5 (1959), 250–264 | DOI | MR | Zbl

[12] Freedman H., “One hundred and two problem in mathematical logic”, J. Symbolic Logic, 40:9 (1975), 113–130 | MR

[13] Segerberg K., An essay in classical modal logic, Filosofiska studier, Uppsala, Sweden, 1971 | MR

[14] Selman A., “Completeness of calculi for axiomaticaly defined classes of algebras”, Algebra universalis, 1972, no. 1, 20–32 | DOI | MR | Zbl