Bases of admissible rules of the modal system Grz and of intuitionistic logic
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 311-331
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the free pseudoboolean algebra $F_\omega(\mathrm{Int})$ and the free topoboolean algebra $F_\omega(\mathrm{Grz})$ do not have bases of quasi-identities in a finite number of variables. A corollary is that the intuitionistic propositional logic $\mathrm{Int}$ and the modal system $\mathrm{Grz}$ do not have finite bases of admissible rules. Infinite recursive bases of quasi-identities are found for $F_\omega(\mathrm{Int})$ and $F_\omega(\mathrm{Grz})$. This implies that the problem of admissibility of rules in the logics $\mathrm{Grz}$ and $\mathrm{Int}$ is algorithmically decidable.
Bibligraphy: 14 titles.
			
            
            
            
          
        
      @article{SM_1987_56_2_a2,
     author = {V. V. Rybakov},
     title = {Bases of admissible rules of the modal system {Grz} and of intuitionistic logic},
     journal = {Sbornik. Mathematics},
     pages = {311--331},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a2/}
}
                      
                      
                    V. V. Rybakov. Bases of admissible rules of the modal system Grz and of intuitionistic logic. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 311-331. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a2/
