An independence theorem and its consequences
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 121-129
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved: Let $A_1,\dots,A_d$ be linear operators in a vector space $V$, $v\in V$, and let the word $C=A_{k_1}A_{k_2}\dots A_{k_n}$ be maximal in the right lexicographical order among all words of length $n$ satisfying the condition $Cv\ne0$. If all the operators corresponding to the subwords of $C$ are nilpotent, then the vectors $v$, $A_{k_n}v$, $A_{k_{n-1}}A_{k_n}v,\dots,A_{k_1}A_{k_2}\cdots A_{k_n}v$ are independent. As a corollary, a proof is presented of Shestakov's conjecture about the number of nil-conditions necessary for a subalgebra of a matrix algebra to be nilpotent. Bibliography: 5 titles.
@article{SM_1987_56_1_a7,
author = {V. A. Ufnarovskii},
title = {An independence theorem and its consequences},
journal = {Sbornik. Mathematics},
pages = {121--129},
year = {1987},
volume = {56},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a7/}
}
V. A. Ufnarovskii. An independence theorem and its consequences. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 121-129. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a7/
[1] Lvov I. V., “K teoreme Shirshova o vysote”, V Vsesoyuznyi simpozium po teorii kolets, algebr i modulei. Tezisy dokladov, Novosibirsk, 1982
[2] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl
[3] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR
[4] Leng S., Algebra, Mir, M., 1968
[5] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | MR | Zbl