An independence theorem and its consequences
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 121-129

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved: Let $A_1,\dots,A_d$ be linear operators in a vector space $V$, $v\in V$, and let the word $C=A_{k_1}A_{k_2}\dots A_{k_n}$ be maximal in the right lexicographical order among all words of length $n$ satisfying the condition $Cv\ne0$. If all the operators corresponding to the subwords of $C$ are nilpotent, then the vectors $v$, $A_{k_n}v$, $A_{k_{n-1}}A_{k_n}v,\dots,A_{k_1}A_{k_2}\cdots A_{k_n}v$ are independent. As a corollary, a proof is presented of Shestakov's conjecture about the number of nil-conditions necessary for a subalgebra of a matrix algebra to be nilpotent. Bibliography: 5 titles.
@article{SM_1987_56_1_a7,
     author = {V. A. Ufnarovskii},
     title = {An independence theorem and its consequences},
     journal = {Sbornik. Mathematics},
     pages = {121--129},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a7/}
}
TY  - JOUR
AU  - V. A. Ufnarovskii
TI  - An independence theorem and its consequences
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 121
EP  - 129
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a7/
LA  - en
ID  - SM_1987_56_1_a7
ER  - 
%0 Journal Article
%A V. A. Ufnarovskii
%T An independence theorem and its consequences
%J Sbornik. Mathematics
%D 1987
%P 121-129
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a7/
%G en
%F SM_1987_56_1_a7
V. A. Ufnarovskii. An independence theorem and its consequences. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 121-129. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a7/