, at the rate $\int_0^1|S_n-f|^p\,dx=o\bigl(\frac1{n^{1-p}}\bigr)$, then $f(x)$ is $A$-integrable and $a_n=(A)\int_0^1f(x)\chi_n(x)\,dx$, for $n=1,2,\dots$. Analogous theorems are proved also for the case where Haar series converge in the metric of $L_p[0,1]$, $0 , over some subsequences of partial sums. The sharpness of these theorems is also proved. Bibliography: 10 titles.
@article{SM_1986_54_1_a4,
author = {A. A. Talalyan},
title = {On the uniqueness of {Haar} series convergent in the metrics of $L_p[0,\,1]$, $0<p<1$, and in measure},
journal = {Sbornik. Mathematics},
pages = {99--111},
year = {1986},
volume = {54},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a4/}
}
A. A. Talalyan. On the uniqueness of Haar series convergent in the metrics of $L_p[0,\,1]$, $0
[1] Talalyan A. A., “Predstavlenie izmerimykh funktsii ryadami”, UMN, 15:5 (1965), 77–141
[2] Talalyan A. A., “Predstavlenie funktsii klassov $L_p$, $0
1$, ortogonalnymi ryadami.”, Acta math. Acad. Sci. hung., 21:1–2 (1970), 1–9 | DOI | Zbl[3] Oswald P., “$L^p$-Approximation durch Reihen nach dem Haar–orthogonal system and dem Faber – Schauder–system”, J. Approxim. Theory, 33:1 (1981), 1–27 | DOI | MR | Zbl
[4] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR
[5] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[6] Titchmarsh E. G., “On conjugate functions”, Pros. London Math. Soc., 29 (1929), 49–80 | DOI
[7] Ulyanov P. L., “$A$-integral i sopryazhennye funktsii”, Uch. zap. MGU, 181 (1956), 139–157 | MR
[8] Ulyanov P. L., “Ob $A$-integrale Koshi”, UMN, 11:5 (1957), 223–229 | MR
[9] Ulyanov P. L., “Primenenie $A$-integrirovaniya k odnomu klassu trigonometricheskikh ryadov”, Matem. sb., 35(77) (1954), 469–490 | MR | Zbl
[10] Skvortsov V. L., “Vychislenie koeffitsientov vsyudu skhodyaschegosya ryada Khaara”, Matem. sb., 75(117) (1968), 349–360 | Zbl