Representation of measurable functions of several variables by multiple trigonometric series
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 259-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{M_k\}_1^{+\infty}$ and $\{N_k\}_1^{+\infty}$ be sequences of natural numbers satisfying the condition $M_k-N_k\to+\infty$ as $k\to+\infty$. It is proved in this paper that for any a.e. finite measurable function $f(x_1,\dots,x_m)$ of $m$ variables, $0\leqslant x\leqslant2\pi$, there exists an $m$-fold trigonometric series $$ \sum_{j_s\in I,\,1\leqslant s\leqslant m}\operatorname{Re}\bigl(a_{j_1,\dots,j_m}e^{i(j_1x_1+\dots+j_mx_m)}\bigr) $$ (where $I=\bigcup_{k=1}^{+\infty}\{j:\,N_k\leqslant j\leqslant M_k\}$), which is a.e. summable to $f(x_1,\dots,x_m)$ by all the classical summation methods. At the same time examples are exhibited of sequences $\{M_k\}$ and $\{N_k\}$ (with the property mentioned above) such that none of the series $$ \sum_{n\in I}\operatorname{Re}\bigl(a_ne^{inx}\bigr) $$ can converge to $+\infty$ on a set of positive measure. Bibliography: 13 titles.
@article{SM_1986_54_1_a12,
     author = {F. G. Arutyunyan},
     title = {Representation of measurable functions of several variables by multiple trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {259--277},
     year = {1986},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a12/}
}
TY  - JOUR
AU  - F. G. Arutyunyan
TI  - Representation of measurable functions of several variables by multiple trigonometric series
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 259
EP  - 277
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a12/
LA  - en
ID  - SM_1986_54_1_a12
ER  - 
%0 Journal Article
%A F. G. Arutyunyan
%T Representation of measurable functions of several variables by multiple trigonometric series
%J Sbornik. Mathematics
%D 1986
%P 259-277
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a12/
%G en
%F SM_1986_54_1_a12
F. G. Arutyunyan. Representation of measurable functions of several variables by multiple trigonometric series. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 259-277. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a12/

[1] Luzin N. N., Integral i trigonometricheskii ryad, Gostekhizdat, M.-L., 1951 | MR

[2] Menshov D. E., “Sur la representation des fonctions mesurables par des series trigonometriques”, Matem. sb., 9(51) (1941), 667–692 | MR

[3] Menshov D. E., O skhodimosti po mere trigonometricheskikh ryadov, Tr. MIAN, 32, 1950 | MR | Zbl

[4] Talalyan A. A., “Trigonometricheskie ryady, universalnye otnositelno podryadov”, Izv. AN SSSR. Ser. matem., 27 (1963), 621–660 | Zbl

[5] Ivanov V. I, Yudin V. A., “O trigonometricheskoi sisteme v $L_p$, $0

1$”, Matem. zametki, 28:6 (1980), 859–868 | MR | Zbl

[6] Dzhvarsheishvili A. G., “O teoreme N. N. Luzina dlya funktsii dvukh peremennykh”, Soobsch. AN Gruz. SSR, 14:1 (1953), 11–15

[7] Topuriya S. B., “Ob odnom svoistve funktsii dvukh peremennykh i kratnykh ryadov fure”, DAN, 195:5 (1970), 1046–1049 | Zbl

[8] Arutyunyan F. G., “Predstavlenie funktsii kratnymi ryadami”, DAN Arm. SSR, 64:2 (1977), 72–76 | MR | Zbl

[9] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR

[10] Arutyunyan F. G., “Predstavlenie izmerimykh funktsii pochti vsyudu skhodyaschimisya ryadami”, Matem. sb., 90(132) (1973), 483–520

[11] Katznelson Y., “Trigonometric series with positive partial suns”, Bull. Amer. Math. Soc., 71:5 (1965), 718–719 | DOI | MR | Zbl

[12] Gundy R. F., “Martingal theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 24:2 (1966), 228–248 | DOI | MR

[13] Talalyan A. L., Arutyunyan F. G., “O skhodimosti ryadov po sisteme Khaara k $+\infty$”, Matem. sb., 66(108) (1965), 240–247