Representation of measurable functions of several variables by multiple trigonometric series
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 259-277
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{M_k\}_1^{+\infty}$ and $\{N_k\}_1^{+\infty}$ be sequences of natural numbers satisfying the condition $M_k-N_k\to+\infty$ as $k\to+\infty$. It is proved in this paper that for any a.e. finite measurable function $f(x_1,\dots,x_m)$ of $m$ variables, $0\leqslant x\leqslant2\pi$, there exists an $m$-fold trigonometric series
$$
\sum_{j_s\in I,\,1\leqslant s\leqslant m}\operatorname{Re}\bigl(a_{j_1,\dots,j_m}e^{i(j_1x_1+\dots+j_mx_m)}\bigr)
$$
(where $I=\bigcup_{k=1}^{+\infty}\{j:\,N_k\leqslant j\leqslant M_k\}$),
which is a.e. summable to $f(x_1,\dots,x_m)$ by all the classical summation methods.
At the same time examples are exhibited of sequences $\{M_k\}$ and $\{N_k\}$ (with the property mentioned above) such that none of the series
$$
\sum_{n\in I}\operatorname{Re}\bigl(a_ne^{inx}\bigr)
$$
can converge to $+\infty$ on a set of positive measure.
Bibliography: 13 titles.
@article{SM_1986_54_1_a12,
author = {F. G. Arutyunyan},
title = {Representation of measurable functions of several variables by multiple trigonometric series},
journal = {Sbornik. Mathematics},
pages = {259--277},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a12/}
}
TY - JOUR AU - F. G. Arutyunyan TI - Representation of measurable functions of several variables by multiple trigonometric series JO - Sbornik. Mathematics PY - 1986 SP - 259 EP - 277 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a12/ LA - en ID - SM_1986_54_1_a12 ER -
F. G. Arutyunyan. Representation of measurable functions of several variables by multiple trigonometric series. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 259-277. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a12/