On the change in harmonic measure under symmetrization
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 267-273
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D_\alpha$ be the unit disc cut along the segments $l_k=\{z:\arg z=\alpha_k,\ r\leqslant|z|\leqslant1\}$, $k=0,1,\dots,n-1$ ($\alpha=(\alpha_0,\alpha_1,\dots,\alpha_{n-1})$, $0$), and let $\omega_\alpha$ be the harmonic measure of the set $\bigcup\limits_{k=0}^{n-1}l_k$ relative to the region $D_\alpha$ at the point $z=0$.
An affirmative solution is given of a problem of A. A. Gonchar:
$$
\omega_\alpha\leqslant\omega_{\alpha^*}
$$
where $\alpha^*=\bigl(0,\frac{2\pi}n,\dots,\frac{2\pi}n(n-1)\bigr)$. Equality holds only when $D_\alpha$ coincides with $D_{\alpha^*}$ to within a rotation about the origin. The proof is based on a property of certain condensers under dissymmetrization, i.e. under a transformation of symmetric condensers into nonsymmetric ones.
Bibliography: 4 titles.
@article{SM_1985_52_1_a14,
author = {V. N. Dubinin},
title = {On the change in harmonic measure under symmetrization},
journal = {Sbornik. Mathematics},
pages = {267--273},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a14/}
}
V. N. Dubinin. On the change in harmonic measure under symmetrization. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 267-273. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a14/