On the change in harmonic measure under symmetrization
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 267-273

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D_\alpha$ be the unit disc cut along the segments $l_k=\{z:\arg z=\alpha_k,\ r\leqslant|z|\leqslant1\}$, $k=0,1,\dots,n-1$ ($\alpha=(\alpha_0,\alpha_1,\dots,\alpha_{n-1})$, $0$), and let $\omega_\alpha$ be the harmonic measure of the set $\bigcup\limits_{k=0}^{n-1}l_k$ relative to the region $D_\alpha$ at the point $z=0$. An affirmative solution is given of a problem of A. A. Gonchar: $$ \omega_\alpha\leqslant\omega_{\alpha^*} $$ where $\alpha^*=\bigl(0,\frac{2\pi}n,\dots,\frac{2\pi}n(n-1)\bigr)$. Equality holds only when $D_\alpha$ coincides with $D_{\alpha^*}$ to within a rotation about the origin. The proof is based on a property of certain condensers under dissymmetrization, i.e. under a transformation of symmetric condensers into nonsymmetric ones. Bibliography: 4 titles.
@article{SM_1985_52_1_a14,
     author = {V. N. Dubinin},
     title = {On the change in harmonic measure under symmetrization},
     journal = {Sbornik. Mathematics},
     pages = {267--273},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a14/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On the change in harmonic measure under symmetrization
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 267
EP  - 273
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a14/
LA  - en
ID  - SM_1985_52_1_a14
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On the change in harmonic measure under symmetrization
%J Sbornik. Mathematics
%D 1985
%P 267-273
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a14/
%G en
%F SM_1985_52_1_a14
V. N. Dubinin. On the change in harmonic measure under symmetrization. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 267-273. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a14/