On the axiomatization of finite-valued logical calculi
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 473-491

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors propose a general effective method for constructing a predicate calculus complete with respect to $L_n$-general validity in quasi-Hilbert form (i.e. in Hilbert form but using a language extended by finitely many “external metasymbols”) on the basis of an arbitrary many-valued logic. For logics in a fairly large class containing many of the logics studied previously, a general effective method is indicated for constructing a predicate calculus of Hilbert type complete with respect to $L_n$-general validity. The results and methods of the article make it possible to initiate the development of model theory on the basis of an arbitrary finite-valued logic. Bibliography: 25 titles.
@article{SM_1985_51_2_a9,
     author = {O. M. Anshakov and S. V. Rychkov},
     title = {On the axiomatization of finite-valued logical calculi},
     journal = {Sbornik. Mathematics},
     pages = {473--491},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a9/}
}
TY  - JOUR
AU  - O. M. Anshakov
AU  - S. V. Rychkov
TI  - On the axiomatization of finite-valued logical calculi
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 473
EP  - 491
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a9/
LA  - en
ID  - SM_1985_51_2_a9
ER  - 
%0 Journal Article
%A O. M. Anshakov
%A S. V. Rychkov
%T On the axiomatization of finite-valued logical calculi
%J Sbornik. Mathematics
%D 1985
%P 473-491
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a9/
%G en
%F SM_1985_51_2_a9
O. M. Anshakov; S. V. Rychkov. On the axiomatization of finite-valued logical calculi. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 473-491. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a9/