Central polynomials in irreducible representations of a~semisimple Lie algebra
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 99-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A central multilinear polynomial is constructed for every reductive finite-dimensional Lie algebra $\mathfrak G$ over an algebraically closed field $K$ of characteristic zero, and almost every faithful irreducible $K$-representation of $\mathfrak G$ in a vector space $V$. The central polynomial is of the form $f(z_{11},\dots,z_{1m},z_{21},\dots,z_{2m},\dots,z_{k1},\dots,z_{km})$, where $m=\dim_k\mathfrak G$ and $f$ is skew-symmetric with respect to the variables of each set $\{z_{i1},\dots,z_{im}\}$ ($ i=1,\dots,k$). The dimension of the vector space $V$ need not be finite.
This result implies that, for the Lie algebra $W_n$ of all regular tangent vector fields of an $n$-dimensional affine algebraic variety, one can construct an associative multilinear polynomial $f$ such that the map
$$
f\circ\mathrm{ad}: W_n\otimes\dots\otimes W_n\to\operatorname{End}_KW_n
$$
is a map onto the center of the algebra $\operatorname{End}_{\mathscr E}W_n$, which is isomorphic to the algebra $\mathscr E$ of all regular functions of this variety.
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_1985_50_1_a6,
     author = {Yu. P. Razmyslov},
     title = {Central polynomials in irreducible representations of a~semisimple {Lie} algebra},
     journal = {Sbornik. Mathematics},
     pages = {99--124},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a6/}
}
                      
                      
                    Yu. P. Razmyslov. Central polynomials in irreducible representations of a~semisimple Lie algebra. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 99-124. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a6/
