Central polynomials in irreducible representations of a semisimple Lie algebra
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 99-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A central multilinear polynomial is constructed for every reductive finite-dimensional Lie algebra $\mathfrak G$ over an algebraically closed field $K$ of characteristic zero, and almost every faithful irreducible $K$-representation of $\mathfrak G$ in a vector space $V$. The central polynomial is of the form $f(z_{11},\dots,z_{1m},z_{21},\dots,z_{2m},\dots,z_{k1},\dots,z_{km})$, where $m=\dim_k\mathfrak G$ and $f$ is skew-symmetric with respect to the variables of each set $\{z_{i1},\dots,z_{im}\}$ ($ i=1,\dots,k$). The dimension of the vector space $V$ need not be finite. This result implies that, for the Lie algebra $W_n$ of all regular tangent vector fields of an $n$-dimensional affine algebraic variety, one can construct an associative multilinear polynomial $f$ such that the map $$ f\circ\mathrm{ad}: W_n\otimes\dots\otimes W_n\to\operatorname{End}_KW_n $$ is a map onto the center of the algebra $\operatorname{End}_{\mathscr E}W_n$, which is isomorphic to the algebra $\mathscr E$ of all regular functions of this variety. Bibliography: 10 titles.
@article{SM_1985_50_1_a6,
     author = {Yu. P. Razmyslov},
     title = {Central polynomials in irreducible representations of a~semisimple {Lie} algebra},
     journal = {Sbornik. Mathematics},
     pages = {99--124},
     year = {1985},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a6/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
TI  - Central polynomials in irreducible representations of a semisimple Lie algebra
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 99
EP  - 124
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a6/
LA  - en
ID  - SM_1985_50_1_a6
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%T Central polynomials in irreducible representations of a semisimple Lie algebra
%J Sbornik. Mathematics
%D 1985
%P 99-124
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a6/
%G en
%F SM_1985_50_1_a6
Yu. P. Razmyslov. Central polynomials in irreducible representations of a semisimple Lie algebra. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 99-124. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a6/

[1] Razmyslov Yu. P., “Predstavleniya konechnomernykh algebr v pervichnykh algebrakh”, Vestn. Mosk. un-ta. Seriya matem., mekh., 1982, no. 6, 31–37 | MR | Zbl

[2] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M. | MR

[3] Razmyslov Yu. P., “Ob odnoi probleme Kaplanskogo”, Izv. AN SSSR. Seriya matem., 37 (1973), 483–501 | MR | Zbl

[4] Razmyslov Y. P., “The nonsolvability of the variety of groups of exponent 4”, Ring theory: Proc. of the 1978 Antwerp conf., (Lect. notes in pure appl. math.; V. 51), 1978, 219–231 | MR

[5] Razmyslov Yu. P., “Algebry, udovletvoryayuschie tozhdestvennym sootnosheniyam tipa Kapelli”, Izv. AN SSSR. Seriya matem., 45 (1981), 143–166 | MR | Zbl

[6] Glushkov V. M., Tseitlin G. E., Yuschenko E. L., Algebra, logika, yazyki, programmirovanie, Naukova dumka, Kiev, 1974 | Zbl

[7] Van der Varden B. L., Algebra, Nauka, M., 1979 | MR

[8] Serr Zh. P., Algebry Li i gruppy, Mir, M., 1969 | MR | Zbl

[9] Razmyslov Yu. P., “Tozhdestva so sledom polnykh matrichnykh algebr nad polem kharakteristiki nul”, Izv. AN SSSR. Seriya matem., 38 (1974), 723–756 | MR | Zbl

[10] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Seriya matem., 33 (1969), 251–322 | MR | Zbl