Duality in Siegel's theorem on representation by a genus of quadratic forms, and the averaging operator
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 1-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $S$ and $T$ be two integral positive definite quadratic forms in the same number of variables, and let $S_1,\dots,S_H$ and $T_1,\dots,T_h$ be complete systems of representatives of the different classes in the genus of the form $S$ and $~T$, respectively. The author proves, in particular, that $$ \bigg(\sum_{i=1}^He(S_i)^{-1}\bigg)^{-1}\sum_{i=1}^He(S_i)^{-1}r(S_i,T)=\bigg(\sum_{j=1}^he(T_j)^{-1}\bigg)^{-1}\sum_{j=1}^he(T_j)^{-1}r(S,T_j), $$ where $r(S',T')$ denotes the number of integral representations of the form $T'$ by the form $S'$, and $e(S') = r(S',S')$. Bibliography: 6 titles.
@article{SM_1985_50_1_a0,
     author = {A. N. Andrianov},
     title = {Duality in {Siegel's} theorem on representation by a~genus of quadratic forms, and the averaging operator},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     year = {1985},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a0/}
}
TY  - JOUR
AU  - A. N. Andrianov
TI  - Duality in Siegel's theorem on representation by a genus of quadratic forms, and the averaging operator
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 1
EP  - 10
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a0/
LA  - en
ID  - SM_1985_50_1_a0
ER  - 
%0 Journal Article
%A A. N. Andrianov
%T Duality in Siegel's theorem on representation by a genus of quadratic forms, and the averaging operator
%J Sbornik. Mathematics
%D 1985
%P 1-10
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a0/
%G en
%F SM_1985_50_1_a0
A. N. Andrianov. Duality in Siegel's theorem on representation by a genus of quadratic forms, and the averaging operator. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a0/

[1] Siegel C. L., “Über die analytische Theorie der quadratischen Formen”, Ann. Math., 36 (1935), 527–606 | DOI | MR | Zbl

[2] Andrianov A. N., Maloletkin G. N., “Povedenie teta-ryadov roda $n$ pri modulyarnykh podstanovkakh”, Izv. AN SSSR. Ser. matem., 39:2 (1975), 243–258 | MR | Zbl

[3] Freitag E., “Holomorphie Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe”, Inventiones Math., 30 (1975), 181–196 | DOI | MR | Zbl

[4] Andrianov A. N., “Multiplikativnaya arifmetika zigelevykh modulyarnykh form”, UMN, 34 (1979), 67–135 | MR | Zbl

[5] Andrianov A. N., “Modular Descent and the Saito–Kurokawa Conjecture”, Inventiones Math., 53 (1979), 267–280 | DOI | MR | Zbl

[6] Kurokawa N., “Examples of Eigenvalues of Hecke Operators on Siegel Cusp Forms of Degree Two”, Inventiones Math., 49 (1978), 149–165 | DOI | MR | Zbl