Duality in Siegel's theorem on representation by a~genus of quadratic forms, and the averaging operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 1-10
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $S$ and $T$ be two integral positive definite quadratic forms in the same number of variables, and let $S_1,\dots,S_H$ and $T_1,\dots,T_h$ be complete systems of representatives of the different classes in the genus of the form $S$ and $~T$, respectively. The author proves, in particular, that
$$
\bigg(\sum_{i=1}^He(S_i)^{-1}\bigg)^{-1}\sum_{i=1}^He(S_i)^{-1}r(S_i,T)=\bigg(\sum_{j=1}^he(T_j)^{-1}\bigg)^{-1}\sum_{j=1}^he(T_j)^{-1}r(S,T_j),
$$
where $r(S',T')$ denotes the number of integral representations of the form $T'$ by the form $S'$, and $e(S') = r(S',S')$.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1985_50_1_a0,
     author = {A. N. Andrianov},
     title = {Duality in {Siegel's} theorem on representation by a~genus of quadratic forms, and the averaging operator},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a0/}
}
                      
                      
                    TY - JOUR AU - A. N. Andrianov TI - Duality in Siegel's theorem on representation by a~genus of quadratic forms, and the averaging operator JO - Sbornik. Mathematics PY - 1985 SP - 1 EP - 10 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a0/ LA - en ID - SM_1985_50_1_a0 ER -
A. N. Andrianov. Duality in Siegel's theorem on representation by a~genus of quadratic forms, and the averaging operator. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a0/
