Reduction problems in experimental investigations
Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 237-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi=Af+\nu$ be the result of measuring a signal $f\in R$ that is not directly observable, where $A\in\mathbf B(R\to\widetilde R)$, $R$ and $\widetilde R$ are Hilbert spaces, and $\nu$ is a random element of $\widetilde R$ giving an error in the measurement of $Af$. Let $\mathbf U$ be the class of Hilbert–Schmidt operators acting from $R$ to $U$, and let $q(\,\cdot\,)$ be a vector-valued function on $\mathbf U$ giving the quality of the “instruments” in $\mathbf U$ in such a way that $q(U_1) if the quality of $U_1$ is higher than that of $U_2$. If $R_{\varepsilon,\delta}$; $U_{\varepsilon,\delta}$ forms a solution of the minimum problem $\min\{\|RA-U\|\mid R\in\mathbf H_-$, $\mathbf E\|R\nu\|^2\leqslant\varepsilon$, $U\in\mathbf U$, $q(U)\leqslant\delta\}=\rho_{\varepsilon,\delta}$, then $R_{\varepsilon,\delta}\xi$ is interpreted as the output signal, distorted by the noise $R_{\varepsilon,\delta}\nu$, of an “instrument” $R_{\varepsilon,\delta}A$ which to within $\rho_{\varepsilon,\delta}$ coincides with an “instrument” $U_{\varepsilon,\delta}$ of guaranteed quality $q(U_{\varepsilon,\delta})\leqslant\delta$. The properties of the measurement reduction $\xi\to R_{\varepsilon,\delta}\xi$ are studied, and questions of optimal design of measurements are considered. Figures: 2. Bibliography: 8 titles.
@article{SM_1984_48_1_a14,
     author = {Yu. P. Pyt'ev},
     title = {Reduction problems in experimental investigations},
     journal = {Sbornik. Mathematics},
     pages = {237--272},
     year = {1984},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a14/}
}
TY  - JOUR
AU  - Yu. P. Pyt'ev
TI  - Reduction problems in experimental investigations
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 237
EP  - 272
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_48_1_a14/
LA  - en
ID  - SM_1984_48_1_a14
ER  - 
%0 Journal Article
%A Yu. P. Pyt'ev
%T Reduction problems in experimental investigations
%J Sbornik. Mathematics
%D 1984
%P 237-272
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_48_1_a14/
%G en
%F SM_1984_48_1_a14
Yu. P. Pyt'ev. Reduction problems in experimental investigations. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 237-272. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a14/

[1] Nikolaev V. I., Pytev Yu. P., Rusakov V. S, Sveshnikov A. G., Terentev E. N., “Novyi printsip organizatsii kompleksa “spektrograf – EVM””, DAN SSSR, 260:4 (1981), 848–853 | MR

[2] Bormot O. V., Pokhil G. P., Pytev Yu. P., Turinge A. A., Chumakov V. Ya., “Effektivnoe shumopodavlenie v eksperimentakh s malym vykhodom yadernykh reaktsii”, Tezisy dokl. 11 Vsesoyuznogo soveschaniya po fizike vzaimodeistviya zaryazhennykh chastits s monokristallami, Izd-vo MGU, M., 1981

[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[4] Pytev Yu. P., “Psevdoobratnyi operator. Svoistva i primeneniya”, Matem. sb., 118 (160), 19–49 | MR

[5] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR | Zbl

[6] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[7] Pytev Yu. P., “Podavlenie lozhnykh signalov v zadache povysheniya razresheniya”, DAN SSSR, 255:3 (1980), 540–544 | MR

[8] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl