if the quality of $U_1$ is higher than that of $U_2$. If $R_{\varepsilon,\delta}$; $U_{\varepsilon,\delta}$ forms a solution of the minimum problem $\min\{\|RA-U\|\mid R\in\mathbf H_-$, $\mathbf E\|R\nu\|^2\leqslant\varepsilon$, $U\in\mathbf U$, $q(U)\leqslant\delta\}=\rho_{\varepsilon,\delta}$, then $R_{\varepsilon,\delta}\xi$ is interpreted as the output signal, distorted by the noise $R_{\varepsilon,\delta}\nu$, of an “instrument” $R_{\varepsilon,\delta}A$ which to within $\rho_{\varepsilon,\delta}$ coincides with an “instrument” $U_{\varepsilon,\delta}$ of guaranteed quality $q(U_{\varepsilon,\delta})\leqslant\delta$. The properties of the measurement reduction $\xi\to R_{\varepsilon,\delta}\xi$ are studied, and questions of optimal design of measurements are considered. Figures: 2. Bibliography: 8 titles.
@article{SM_1984_48_1_a14,
author = {Yu. P. Pyt'ev},
title = {Reduction problems in experimental investigations},
journal = {Sbornik. Mathematics},
pages = {237--272},
year = {1984},
volume = {48},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_48_1_a14/}
}
Yu. P. Pyt'ev. Reduction problems in experimental investigations. Sbornik. Mathematics, Tome 48 (1984) no. 1, pp. 237-272. http://geodesic.mathdoc.fr/item/SM_1984_48_1_a14/
[1] Nikolaev V. I., Pytev Yu. P., Rusakov V. S, Sveshnikov A. G., Terentev E. N., “Novyi printsip organizatsii kompleksa “spektrograf – EVM””, DAN SSSR, 260:4 (1981), 848–853 | MR
[2] Bormot O. V., Pokhil G. P., Pytev Yu. P., Turinge A. A., Chumakov V. Ya., “Effektivnoe shumopodavlenie v eksperimentakh s malym vykhodom yadernykh reaktsii”, Tezisy dokl. 11 Vsesoyuznogo soveschaniya po fizike vzaimodeistviya zaryazhennykh chastits s monokristallami, Izd-vo MGU, M., 1981
[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[4] Pytev Yu. P., “Psevdoobratnyi operator. Svoistva i primeneniya”, Matem. sb., 118 (160), 19–49 | MR
[5] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR | Zbl
[6] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR
[7] Pytev Yu. P., “Podavlenie lozhnykh signalov v zadache povysheniya razresheniya”, DAN SSSR, 255:3 (1980), 540–544 | MR
[8] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl