On~a~problem with free boundary for parabolic equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 473-484
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers the problem of determining a solution of the parabolic equation 
$$
L\theta\equiv D_t\theta-\sum^2_{i,j=1}D_i(a_{ij}(x,t,\theta)\cdot D_j\theta)+a(x,t,\theta,D\theta)=0
$$
and the boundary of the two-dimensional region in which a solution of the equation is sought in the case where on the free boundary the value of the desired function and the additional condition 
$$
\sum^2_{i,j=1}a_{ij}D_i\theta\cdot D_j\theta=g(x,t)
$$
are satisfied. 
For this problem a theorem asserting the existence of a smooth solution on a small time interval is proved. If $L\theta=0$ is the heat equation, then the solution exists on any time interval, and it is unique.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1982_43_4_a1,
     author = {A. M. Meirmanov},
     title = {On~a~problem with free boundary for parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {473--484},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a1/}
}
                      
                      
                    A. M. Meirmanov. On~a~problem with free boundary for parabolic equations. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 473-484. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a1/
