On~a~problem with free boundary for parabolic equations
Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 473-484

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the problem of determining a solution of the parabolic equation $$ L\theta\equiv D_t\theta-\sum^2_{i,j=1}D_i(a_{ij}(x,t,\theta)\cdot D_j\theta)+a(x,t,\theta,D\theta)=0 $$ and the boundary of the two-dimensional region in which a solution of the equation is sought in the case where on the free boundary the value of the desired function and the additional condition $$ \sum^2_{i,j=1}a_{ij}D_i\theta\cdot D_j\theta=g(x,t) $$ are satisfied. For this problem a theorem asserting the existence of a smooth solution on a small time interval is proved. If $L\theta=0$ is the heat equation, then the solution exists on any time interval, and it is unique. Bibliography: 7 titles.
@article{SM_1982_43_4_a1,
     author = {A. M. Meirmanov},
     title = {On~a~problem with free boundary for parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {473--484},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a1/}
}
TY  - JOUR
AU  - A. M. Meirmanov
TI  - On~a~problem with free boundary for parabolic equations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 473
EP  - 484
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_4_a1/
LA  - en
ID  - SM_1982_43_4_a1
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%T On~a~problem with free boundary for parabolic equations
%J Sbornik. Mathematics
%D 1982
%P 473-484
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_4_a1/
%G en
%F SM_1982_43_4_a1
A. M. Meirmanov. On~a~problem with free boundary for parabolic equations. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 473-484. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a1/