The Fourier series method for entire and meromorphic functions of completely regular growth.~II
Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 101-113

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fourier series method is used to obtain an integral criterion for an entire function to be of completely regular growth. It is shown that when the pair $(Z,W)$ of sequences $Z$ of zeros and $W$ of poles of a meromorphic function $f$ has an angular density, the function belongs to the class $\Lambda^0$ of meromorphic functions of completely regular growth introduced in Part I of this paper, and the asymptotic properties of this function are studied. A function $f\in\Lambda^0$ for which $(Z,W)$ does not have an angular density is constructed; examples of $[\varkappa,\rho]$-trigonometrically convex functions are presented. Bibliography: 14 titles.
@article{SM_1982_41_1_a5,
     author = {A. A. Kondratyuk},
     title = {The {Fourier} series method for entire and meromorphic functions of completely regular {growth.~II}},
     journal = {Sbornik. Mathematics},
     pages = {101--113},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/}
}
TY  - JOUR
AU  - A. A. Kondratyuk
TI  - The Fourier series method for entire and meromorphic functions of completely regular growth.~II
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 101
EP  - 113
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/
LA  - en
ID  - SM_1982_41_1_a5
ER  - 
%0 Journal Article
%A A. A. Kondratyuk
%T The Fourier series method for entire and meromorphic functions of completely regular growth.~II
%J Sbornik. Mathematics
%D 1982
%P 101-113
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/
%G en
%F SM_1982_41_1_a5
A. A. Kondratyuk. The Fourier series method for entire and meromorphic functions of completely regular growth.~II. Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 101-113. http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/