The Fourier series method for entire and meromorphic functions of completely regular growth. II
Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 101-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fourier series method is used to obtain an integral criterion for an entire function to be of completely regular growth. It is shown that when the pair $(Z,W)$ of sequences $Z$ of zeros and $W$ of poles of a meromorphic function $f$ has an angular density, the function belongs to the class $\Lambda^0$ of meromorphic functions of completely regular growth introduced in Part I of this paper, and the asymptotic properties of this function are studied. A function $f\in\Lambda^0$ for which $(Z,W)$ does not have an angular density is constructed; examples of $[\varkappa,\rho]$-trigonometrically convex functions are presented. Bibliography: 14 titles.
@article{SM_1982_41_1_a5,
     author = {A. A. Kondratyuk},
     title = {The {Fourier} series method for entire and meromorphic functions of completely regular {growth.~II}},
     journal = {Sbornik. Mathematics},
     pages = {101--113},
     year = {1982},
     volume = {41},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/}
}
TY  - JOUR
AU  - A. A. Kondratyuk
TI  - The Fourier series method for entire and meromorphic functions of completely regular growth. II
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 101
EP  - 113
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/
LA  - en
ID  - SM_1982_41_1_a5
ER  - 
%0 Journal Article
%A A. A. Kondratyuk
%T The Fourier series method for entire and meromorphic functions of completely regular growth. II
%J Sbornik. Mathematics
%D 1982
%P 101-113
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/
%G en
%F SM_1982_41_1_a5
A. A. Kondratyuk. The Fourier series method for entire and meromorphic functions of completely regular growth. II. Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 101-113. http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/

[1] A. A. Kondratyuk, “Metod ryadov Fure dlya tselykh i meromorfnykh funktsii vpolne regulyarnogo rosta”, Matem. sb., 106(148) (1978), 386–408 | MR | Zbl

[2] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[3] A. Zigmund, Trigonometricheskie ryady, t. 2, izd-vo “Mir”, Moskva, 1965 | MR

[4] L. A. Rubel, B. A. Taylor, “A Fourier series method for mesomorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl

[5] A. A. Goldberg, “O defektakh tselykh funktsii vpolne regulyarnogo rosta”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, no. 14, Kharkov, 1971, 88–101

[6] S. Hellerstein, J. Williamson, “Entire functions with negative zeros and a problem of R. Nevanlinna”, J. analyse math., 22 (1969), 233–267 | DOI | MR | Zbl

[7] U. K. Kheiman, Meromorfnye funktsii, izd-vo “Mir”, Moskva, 1966 | MR

[8] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, izd-vo “Nauka”, Moskva, 1970 | MR

[9] A. A. Kondratyuk, “Ekstremalnyi indikator dlya tselykh funktsii s polozhitelnymi nulyami”, Lit. matem. sb., 7:1 (1967), 79–117

[10] A. A. Goldberg, “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. IV”, Matem. sb., 66(108) (1965), 411–457

[11] A. A. Goldberg, “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. III”, Matem. sb., 65(107) (1964), 414–453 | MR

[12] Yu. P. Lapenko, O meromorfnykh funktsiyakh vpolne regulyarnogo rosta. I, Dep. VINITI, no. 2267–77, 1977

[13] G. Polya, “Untersuchungen iiber Zucken und Singularitaten von Potenzreihen”, Math. Z., 29 (1929), 549–640 | DOI | MR | Zbl

[14] A. A. Kondratyuk, “Tselye funktsii s polozhitelnymi nulyami, imeyuschimi konechnuyu maksimalnuyu plotnost”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, no. 7, Kharkov, 1968, 37–52 | Zbl