The Fourier series method for entire and meromorphic functions of completely regular growth.~II
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 101-113
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Fourier series method is used to obtain an integral criterion for an entire function to be of completely regular growth.
It is shown that when the pair $(Z,W)$ of sequences $Z$ of zeros and $W$ of poles of a meromorphic function $f$ has an angular density, the function belongs to the class $\Lambda^0$ of meromorphic functions of completely regular growth introduced in Part I of this paper, and the asymptotic properties of this function are studied. A function $f\in\Lambda^0$ for which $(Z,W)$ does not have an angular density is constructed; examples of $[\varkappa,\rho]$-trigonometrically convex functions are presented.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1982_41_1_a5,
     author = {A. A. Kondratyuk},
     title = {The {Fourier} series method for entire and meromorphic functions of completely regular {growth.~II}},
     journal = {Sbornik. Mathematics},
     pages = {101--113},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/}
}
                      
                      
                    TY - JOUR AU - A. A. Kondratyuk TI - The Fourier series method for entire and meromorphic functions of completely regular growth.~II JO - Sbornik. Mathematics PY - 1982 SP - 101 EP - 113 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/ LA - en ID - SM_1982_41_1_a5 ER -
A. A. Kondratyuk. The Fourier series method for entire and meromorphic functions of completely regular growth.~II. Sbornik. Mathematics, Tome 41 (1982) no. 1, pp. 101-113. http://geodesic.mathdoc.fr/item/SM_1982_41_1_a5/
