Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 133-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that every continuous function defined on the $n$-dimensional rectangular parallelepiped $\{x=(x_1,\dots,x_n)\in\mathbf R^n:0\leqslant x_i\leqslant a_i,\ 1\leqslant i\leqslant n\}$ can be approximated by polynomials of the form $Q(x)=\sum^p_{|\alpha|=0}c_\alpha x^\alpha$, where $c_\alpha=\eta_\alpha M(\alpha)$, with $\sum^p_{|\alpha|=0}|\eta_\alpha|\leqslant1$. Here $M(\alpha)$ is an arbitrary positive function defined on the set of multi-indices, and $\lim_{|\alpha|\to\infty}\sqrt[|\alpha|]{M(\alpha)}=\infty$. Bibliography: 9 titles.
@article{SM_1981_39_1_a6,
     author = {V. V. Napalkov},
     title = {Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations},
     journal = {Sbornik. Mathematics},
     pages = {133--143},
     year = {1981},
     volume = {39},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 133
EP  - 143
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/
LA  - en
ID  - SM_1981_39_1_a6
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
%J Sbornik. Mathematics
%D 1981
%P 133-143
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/
%G en
%F SM_1981_39_1_a6
V. V. Napalkov. Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/

[1] J. D. Stafney, “A permissible restriction on the coefficients in uniform polynomial approximation to $\mathcal C_{[0,1]}$”, Duke Math. J., 34:3 (1967), 393–396 | DOI | MR | Zbl

[2] S. Ya. Khavinson, “Dopustimye velichiny koeffitsientov mnogochlenov pri ravnomernoi approksimatsii nepreryvnykh funktsii”, Matem. zametki, 6:5 (1969), 619–625 | Zbl

[3] S. Ya. Khavinson, “Nekotorye voprosy polnoty sistem”, DAN SSSR, 137:4 (1961), 793–796 | Zbl

[4] O. A. Muradyan, “O roste koeffitsientov approksimiruyuschikh agregatov v teoreme Myuntsa”, Izv. AN Arm. SSR, seriya matem., 8:1 (1973), 70–87 | MR

[5] R. Edvards, Funktsionalnyi analiz, Moskva, 1969

[6] R. P. Boas, Entire functions, Academic Press, New York, 1954 | MR | Zbl

[7] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, izd-vo “Mir”, Moskva, 1968 | MR

[8] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, izd-vo “Mir”, Moskva, 1971

[9] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, izd-vo “Nauka”, Moskva, 1964 | MR