Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 133-143
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that every continuous function defined on the $n$-dimensional rectangular parallelepiped $\{x=(x_1,\dots,x_n)\in\mathbf R^n:0\leqslant x_i\leqslant a_i,\ 1\leqslant i\leqslant n\}$ can be approximated by polynomials of the form $Q(x)=\sum^p_{|\alpha|=0}c_\alpha x^\alpha$, where $c_\alpha=\eta_\alpha M(\alpha)$, with $\sum^p_{|\alpha|=0}|\eta_\alpha|\leqslant1$. Here $M(\alpha)$ is an arbitrary positive function defined on the set of multi-indices, and $\lim_{|\alpha|\to\infty}\sqrt[|\alpha|]{M(\alpha)}=\infty$.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1981_39_1_a6,
     author = {V. V. Napalkov},
     title = {Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations},
     journal = {Sbornik. Mathematics},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/}
}
                      
                      
                    TY - JOUR AU - V. V. Napalkov TI - Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations JO - Sbornik. Mathematics PY - 1981 SP - 133 EP - 143 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/ LA - en ID - SM_1981_39_1_a6 ER -
%0 Journal Article %A V. V. Napalkov %T Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations %J Sbornik. Mathematics %D 1981 %P 133-143 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/ %G en %F SM_1981_39_1_a6
V. V. Napalkov. Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/
