Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 133-143

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every continuous function defined on the $n$-dimensional rectangular parallelepiped $\{x=(x_1,\dots,x_n)\in\mathbf R^n:0\leqslant x_i\leqslant a_i,\ 1\leqslant i\leqslant n\}$ can be approximated by polynomials of the form $Q(x)=\sum^p_{|\alpha|=0}c_\alpha x^\alpha$, where $c_\alpha=\eta_\alpha M(\alpha)$, with $\sum^p_{|\alpha|=0}|\eta_\alpha|\leqslant1$. Here $M(\alpha)$ is an arbitrary positive function defined on the set of multi-indices, and $\lim_{|\alpha|\to\infty}\sqrt[|\alpha|]{M(\alpha)}=\infty$. Bibliography: 9 titles.
@article{SM_1981_39_1_a6,
     author = {V. V. Napalkov},
     title = {Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations},
     journal = {Sbornik. Mathematics},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
JO  - Sbornik. Mathematics
PY  - 1981
SP  - 133
EP  - 143
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/
LA  - en
ID  - SM_1981_39_1_a6
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
%J Sbornik. Mathematics
%D 1981
%P 133-143
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/
%G en
%F SM_1981_39_1_a6
V. V. Napalkov. Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations. Sbornik. Mathematics, Tome 39 (1981) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/SM_1981_39_1_a6/