Integral moduli of smoothness and the Fourier coefficients of the composition of functions
Sbornik. Mathematics, Tome 38 (1981) no. 4, pp. 549-561
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the integral modulus of smoothness, estimates for the Fourier coefficients of a composition of functions are obtained in this paper. It is proved, for example, that for any function $f(x)\in C(0,2\pi)$ and any positive sequence $\{\varepsilon_n\}_{n=1}^\infty$ with
$$
1=\varepsilon_1\geqslant\varepsilon_2\geqslant\dotsb,\qquad\sum_{n=1}^\infty\frac{\varepsilon_n}n=\infty
$$
there exists a monotone continuous function $\tau(x)$ ($\tau(0)=0$, $\tau(2\pi)=2\pi$) such that
$$
|a_n(F)|+|b_n(F)|= O(\varepsilon_n n^{-1}+n^{-3/2}),
$$
where $a_n(F)$ and $b_n(F)$ are the Fourier coefficients of the function $F(x)=f(\tau(x))$.
Bibliography: 4 titles.
@article{SM_1981_38_4_a6,
author = {A. A. Sahakian},
title = {Integral moduli of smoothness and the {Fourier} coefficients of the composition of functions},
journal = {Sbornik. Mathematics},
pages = {549--561},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1981_38_4_a6/}
}
A. A. Sahakian. Integral moduli of smoothness and the Fourier coefficients of the composition of functions. Sbornik. Mathematics, Tome 38 (1981) no. 4, pp. 549-561. http://geodesic.mathdoc.fr/item/SM_1981_38_4_a6/