Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree~$n$
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 425-440
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove the following theorem.
Theorem. Suppose that $p>3n/2+1$ for $n8$ and $p>2n-5$ for
$n\geqslant8$, and $G$ is a subgroup of $GL(V_n)$ containing $\varphi_n(SL(2,p))$. Then one of the following assertions is true:
$1)$ $G\subset P^*\varphi_n(GL(2,p))$;
$2)$ $G\supset SL(n,p)$;
$3)$ $n$ is even and $Sp(n,p)\subset G\subset HSp(n,p)$;
$4)$ $n$ is odd and $\Omega(n,p)\subset G\subset P^*O(n,p)$;
$5)$ $n=7$ and $G=G_2(p)Z(G)$.
Here $P^*$ is the multiplicative group of the field $P$, $Sp(n,p)$ is the symplectic group, $HSp(n,p)$ is the group of symplectic similarities, $\Omega(n,p)$ is the derived group of the orthogonal group, $G_2(p)$ is the Chevalley group over $P$ associated with the Lie algebra of type $G_2$, and $Z(G)$ is the center of $G$. Bibliography: 16 titles.
@article{SM_1980_37_3_a9,
author = {I. D. Suprunenko},
title = {Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree~$n$},
journal = {Sbornik. Mathematics},
pages = {425--440},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a9/}
}
I. D. Suprunenko. Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree~$n$. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 425-440. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a9/