Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree $n$
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 425-440 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove the following theorem. Theorem. Suppose that $p>3n/2+1$ for $n<8$ and $p>2n-5$ for $n\geqslant8$, and $G$ is a subgroup of $GL(V_n)$ containing $\varphi_n(SL(2,p))$. Then one of the following assertions is true: $1)$ $G\subset P^*\varphi_n(GL(2,p))$; $2)$ $G\supset SL(n,p)$; $3)$ $n$ is even and $Sp(n,p)\subset G\subset HSp(n,p)$; $4)$ $n$ is odd and $\Omega(n,p)\subset G\subset P^*O(n,p)$; $5)$ $n=7$ and $G=G_2(p)Z(G)$. Here $P^*$ is the multiplicative group of the field $P$, $Sp(n,p)$ is the symplectic group, $HSp(n,p)$ is the group of symplectic similarities, $\Omega(n,p)$ is the derived group of the orthogonal group, $G_2(p)$ is the Chevalley group over $P$ associated with the Lie algebra of type $G_2$, and $Z(G)$ is the center of $G$. Bibliography: 16 titles.
@article{SM_1980_37_3_a9,
     author = {I. D. Suprunenko},
     title = {Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree~$n$},
     journal = {Sbornik. Mathematics},
     pages = {425--440},
     year = {1980},
     volume = {37},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a9/}
}
TY  - JOUR
AU  - I. D. Suprunenko
TI  - Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree $n$
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 425
EP  - 440
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a9/
LA  - en
ID  - SM_1980_37_3_a9
ER  - 
%0 Journal Article
%A I. D. Suprunenko
%T Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree $n$
%J Sbornik. Mathematics
%D 1980
%P 425-440
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1980_37_3_a9/
%G en
%F SM_1980_37_3_a9
I. D. Suprunenko. Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree $n$. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 425-440. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a9/

[1] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits, Koltsa i moduli”, Zapiski nauchnykh seminarov LOMI, 64 (1976), 12–29 | Zbl

[2] Zh. Dedonne, Geometriya klassicheskikh grupp, izd-vo “Mir”, Moskva, 1974 | MR

[3] A. E. Zalesskii, V. N. Serezhkin, “Lineinye gruppy, porozhdennye transvektsiyami”, Izv. AN SSSR, seriya matem., 40 (1976), 26–49 | MR | Zbl

[4] A. E. Zalesskii, I. D. Suprunenko, “Klassifikatsiya konechnykh neprivodimykh lineinykh grupp stepeni $4$ nad polem kharakteristiki $p>5$”, Izv. AN BSSR, seriya fiz-matem., 1978 | Zbl

[5] V. N. Serezhkin, Gruppy otrazhenii nad konechnymi polyami kharakteristiki $p>5$, Dissertatsiya, IM AN BSSR, Minsk, 1977 | Zbl

[6] R. Steinberg, Lektsii o gruppakh Shevalle, izd-vo “Mir”, Moskva, 1975 | MR

[7] H. Blau, “Under the degree of some finite linear groups”, Trans. Amer. Math. Soc., 155:1 (1971), 95–113 | DOI | MR | Zbl

[8] J. Dixon, The structure of linear groups, London, 1971

[9] W. Feit, “Groups with a cyclic sylow subgroup”, Nagoya Math. J., 27 (1966), 671–584 | MR

[10] W. Feit, “The current situation in the theory of finite simple groups”, Actes, Congres internat. math., t. 1 (1970), 55–93 | MR

[11] P. Fong, “A characterization of the finite simple groups $PSP(4,q)$, $G_2(q)$, $D_4^2(q)$. II”, Nagoya Math., J., 39 (1970), 39–79 | MR | Zbl

[12] Ho Chat-Yin, “On the quadratic pairs”, J. Algebra, 43:1 (1976), 338–358 | DOI | MR | Zbl

[13] R. Ree, “On some simple groups defined by C. Chevalley”, Trans. Amer. Math. Soc., 84 (1957), 392–400 | DOI | MR | Zbl

[14] B. S. Stark, “Irreducible subgroups of orthogonal groups generated by groups of root type $1$”, Pacific J. Math., 53:2 (1974), 611–625 | MR | Zbl

[15] B. S. Stark, “Some subgroups of $\Omega(V)$ generated by groups of root type”, J. Algebra, 29:1 (1974), 33–41 | DOI | MR | Zbl

[16] J. G. Thompson, “Quadratic pairs”, Actes, Congres intern. Math., t. 1, 1970, 375–376 | MR