A new limit theorem for the critical Bellman--Harris branching process
Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 411-423

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $z(t)$ be the number of particles in a Bellman–Harris process at time $t$, $G(t)$ the distribution function of the lifetimes of the particles, $f(s)$ the generating function of the number of offspring of one particle, and $f'(1)=1$. In the case when $ f(s)=s+(1-s)^{1+\alpha}L(1-s)$, where $\alpha\in(0,1)$ and $L(x)$ is slowly varying as $x\to+0$, and $n(1-G(n))\sim c(1-f_n(0))$, as $n\to\infty$, it is shown that $$ \lim_{t\to\infty}\mathsf P\{z(t)\varphi(t)\le x\mid z(t)> 0\} $$ for a function $\varphi(t)$ equal either to 1 or to $\mathsf P\{z(t)>0\}$. Bibliography: 11 titles.
@article{SM_1980_37_3_a8,
     author = {V. A. Vatutin},
     title = {A new limit theorem for the critical {Bellman--Harris} branching process},
     journal = {Sbornik. Mathematics},
     pages = {411--423},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_37_3_a8/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - A new limit theorem for the critical Bellman--Harris branching process
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 411
EP  - 423
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_37_3_a8/
LA  - en
ID  - SM_1980_37_3_a8
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T A new limit theorem for the critical Bellman--Harris branching process
%J Sbornik. Mathematics
%D 1980
%P 411-423
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_37_3_a8/
%G en
%F SM_1980_37_3_a8
V. A. Vatutin. A new limit theorem for the critical Bellman--Harris branching process. Sbornik. Mathematics, Tome 37 (1980) no. 3, pp. 411-423. http://geodesic.mathdoc.fr/item/SM_1980_37_3_a8/