A~generalization of the Borsuk--Ulam theorem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 195-202
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X$ be a connected paracompact Hausdorff space, acted on without fixed points by a cyclic group $\pi=\mathbf Z_p$ of prime order $p$. For any continuous mapping $f\colon X\to M$ let
$$
\ A(f)=\{x\in X\mid f(x)=f(Tx)=\cdots=f(T^{p-1}x)\},
$$
where $T$ is a generator of $\pi$. 
Suppose $\Breve H^i(X;\mathbf Z_p)=0$ for $0$, and $M$ is a compact 
$\mathbf Z_p$-orientable topological manifold of dimension $m$. If the mapping $f^*\colon\Breve H^n(M;\mathbf Z_p)\to\Breve H^n(X;\mathbf Z_p)$ has zero image, then the cohomological dimension over $ \mathbf Z_p$ of the set $A(f)$ is at least $n-m(p-1)$. 
Furthermore, if $X$ is a generalized manifold of dimension $N$, and $n=m(p-1)$, then $\dim A(f)\geqslant N-m(p-1)$.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1980_36_2_a3,
     author = {A. Yu. Volovikov},
     title = {A~generalization of the {Borsuk--Ulam} theorem},
     journal = {Sbornik. Mathematics},
     pages = {195--202},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a3/}
}
                      
                      
                    A. Yu. Volovikov. A~generalization of the Borsuk--Ulam theorem. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 195-202. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a3/
