A~generalization of the Borsuk--Ulam theorem
Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 195-202

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a connected paracompact Hausdorff space, acted on without fixed points by a cyclic group $\pi=\mathbf Z_p$ of prime order $p$. For any continuous mapping $f\colon X\to M$ let $$ \ A(f)=\{x\in X\mid f(x)=f(Tx)=\cdots=f(T^{p-1}x)\}, $$ where $T$ is a generator of $\pi$. Suppose $\Breve H^i(X;\mathbf Z_p)=0$ for $0$, and $M$ is a compact $\mathbf Z_p$-orientable topological manifold of dimension $m$. If the mapping $f^*\colon\Breve H^n(M;\mathbf Z_p)\to\Breve H^n(X;\mathbf Z_p)$ has zero image, then the cohomological dimension over $ \mathbf Z_p$ of the set $A(f)$ is at least $n-m(p-1)$. Furthermore, if $X$ is a generalized manifold of dimension $N$, and $n=m(p-1)$, then $\dim A(f)\geqslant N-m(p-1)$. Bibliography: 8 titles.
@article{SM_1980_36_2_a3,
     author = {A. Yu. Volovikov},
     title = {A~generalization of the {Borsuk--Ulam} theorem},
     journal = {Sbornik. Mathematics},
     pages = {195--202},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1980_36_2_a3/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - A~generalization of the Borsuk--Ulam theorem
JO  - Sbornik. Mathematics
PY  - 1980
SP  - 195
EP  - 202
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1980_36_2_a3/
LA  - en
ID  - SM_1980_36_2_a3
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T A~generalization of the Borsuk--Ulam theorem
%J Sbornik. Mathematics
%D 1980
%P 195-202
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1980_36_2_a3/
%G en
%F SM_1980_36_2_a3
A. Yu. Volovikov. A~generalization of the Borsuk--Ulam theorem. Sbornik. Mathematics, Tome 36 (1980) no. 2, pp. 195-202. http://geodesic.mathdoc.fr/item/SM_1980_36_2_a3/