A~singular integral equation with small parameter on a~finite interval
Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 475-502
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic properties of the following singular integral equation are investigated in the paper:
\begin{equation}
\int_0^1\biggl[\frac1{x-t}+a(x-t,\varepsilon)\biggr]u_\varepsilon(t)\,dt =f(t),
\end{equation}
where $\varepsilon>0$ is a small parameter and $f(x)\in C^\infty[0,1]$. Equation (1) is regarded as a boundary value problem for a one-dimensional elliptic pseudodifferential operator wtih piecewise smooth symbol. A typical example of the symbol is the function $\widetilde a(\lambda,\varepsilon)=\pi i\operatorname{sign}\lambda[1+e^{-\varepsilon|\lambda|}]$, which corresponds to an equation in the theory of dislocations.
The asymptotic expansion of the solution of equation (1) contains functions of boundary layer type that depend on the variables $\xi=\frac x\varepsilon$ and $\eta=\frac{1-x}\varepsilon$ and decrease powerlike at infinity. The matching of the boundary layer expansion with the exterior expansion (in the variable $x$) is carried out by means of a special two-scaled representation of the integrals of form (1), in which the function $u_\varepsilon(x)$ is replaced by its asymptotic series.
Bibliography: 10 titles.
@article{SM_1978_34_4_a4,
author = {V. Yu. Novokshenov},
title = {A~singular integral equation with small parameter on a~finite interval},
journal = {Sbornik. Mathematics},
pages = {475--502},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_4_a4/}
}
V. Yu. Novokshenov. A~singular integral equation with small parameter on a~finite interval. Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 475-502. http://geodesic.mathdoc.fr/item/SM_1978_34_4_a4/