A~singular integral equation with small parameter on a~finite interval
Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 475-502

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic properties of the following singular integral equation are investigated in the paper: \begin{equation} \int_0^1\biggl[\frac1{x-t}+a(x-t,\varepsilon)\biggr]u_\varepsilon(t)\,dt =f(t), \end{equation} where $\varepsilon>0$ is a small parameter and $f(x)\in C^\infty[0,1]$. Equation (1) is regarded as a boundary value problem for a one-dimensional elliptic pseudodifferential operator wtih piecewise smooth symbol. A typical example of the symbol is the function $\widetilde a(\lambda,\varepsilon)=\pi i\operatorname{sign}\lambda[1+e^{-\varepsilon|\lambda|}]$, which corresponds to an equation in the theory of dislocations. The asymptotic expansion of the solution of equation (1) contains functions of boundary layer type that depend on the variables $\xi=\frac x\varepsilon$ and $\eta=\frac{1-x}\varepsilon$ and decrease powerlike at infinity. The matching of the boundary layer expansion with the exterior expansion (in the variable $x$) is carried out by means of a special two-scaled representation of the integrals of form (1), in which the function $u_\varepsilon(x)$ is replaced by its asymptotic series. Bibliography: 10 titles.
@article{SM_1978_34_4_a4,
     author = {V. Yu. Novokshenov},
     title = {A~singular integral equation with small parameter on a~finite interval},
     journal = {Sbornik. Mathematics},
     pages = {475--502},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_4_a4/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - A~singular integral equation with small parameter on a~finite interval
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 475
EP  - 502
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_4_a4/
LA  - en
ID  - SM_1978_34_4_a4
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T A~singular integral equation with small parameter on a~finite interval
%J Sbornik. Mathematics
%D 1978
%P 475-502
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_4_a4/
%G en
%F SM_1978_34_4_a4
V. Yu. Novokshenov. A~singular integral equation with small parameter on a~finite interval. Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 475-502. http://geodesic.mathdoc.fr/item/SM_1978_34_4_a4/