On the addition of the indicators of entire and subharmonic functions of several variables
Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 119-130

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a necessary and sufficient criterion is derived for a subharmonic function $u(x)$ defined in $\mathbf R^p$ and having proximate order $\rho(t)$ to belong to the class of functions of completely regular growth. The criterion is that for any subharmonic function $v(x)$ with the same proximate order the sum of the regularized indicators of $u(x)$ and $v(x)$ be equal to the regularized indicator of the sum $u(x)+v(x)$. If the dimension of the space is $p=2l$ then it suffices to consider functions $v(x)$ of the type $\ln|f(z)|$, where $f(z)$ is an entire function on $\mathbf C^l$. Bibliography: 14 titles.
@article{SM_1978_34_1_a5,
     author = {S. Yu. Favorov},
     title = {On the addition of the indicators of entire and subharmonic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/}
}
TY  - JOUR
AU  - S. Yu. Favorov
TI  - On the addition of the indicators of entire and subharmonic functions of several variables
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 119
EP  - 130
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/
LA  - en
ID  - SM_1978_34_1_a5
ER  - 
%0 Journal Article
%A S. Yu. Favorov
%T On the addition of the indicators of entire and subharmonic functions of several variables
%J Sbornik. Mathematics
%D 1978
%P 119-130
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/
%G en
%F SM_1978_34_1_a5
S. Yu. Favorov. On the addition of the indicators of entire and subharmonic functions of several variables. Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/