On the addition of the indicators of entire and subharmonic functions of several variables
Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 119-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article a necessary and sufficient criterion is derived for a subharmonic function $u(x)$ defined in $\mathbf R^p$ and having proximate order $\rho(t)$ to belong to the class of functions of completely regular growth. The criterion is that for any subharmonic function $v(x)$ with the same proximate order the sum of the regularized indicators of $u(x)$ and $v(x)$ be equal to the regularized indicator of the sum $u(x)+v(x)$. If the dimension of the space is $p=2l$ then it suffices to consider functions $v(x)$ of the type $\ln|f(z)|$, where $f(z)$ is an entire function on $\mathbf C^l$. Bibliography: 14 titles.
@article{SM_1978_34_1_a5,
     author = {S. Yu. Favorov},
     title = {On the addition of the indicators of entire and subharmonic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {119--130},
     year = {1978},
     volume = {34},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/}
}
TY  - JOUR
AU  - S. Yu. Favorov
TI  - On the addition of the indicators of entire and subharmonic functions of several variables
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 119
EP  - 130
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/
LA  - en
ID  - SM_1978_34_1_a5
ER  - 
%0 Journal Article
%A S. Yu. Favorov
%T On the addition of the indicators of entire and subharmonic functions of several variables
%J Sbornik. Mathematics
%D 1978
%P 119-130
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/
%G en
%F SM_1978_34_1_a5
S. Yu. Favorov. On the addition of the indicators of entire and subharmonic functions of several variables. Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/SM_1978_34_1_a5/

[1] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[2] V. S. Azarin, “Ob odnom kharakteristicheskom svoistve funktsii vpolne regulyarnogo rosta vnutri ugla”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 2, Kharkov, 1966, 55–66 | MR | Zbl

[3] L. I. Ronkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, izd-vo “Nauka”, Moskva, 1971 | MR

[4] V. S. Azarin, “O subgarmonicheskikh vo vsem prostranstve funktsiyakh vpolne regulyarnogo rosta”, Zapiski Khark. matem. ob-va i mekh.-matem. fak. KhGU, seriya 4, XXVIII, 1961, 128–148 | MR

[5] L. I. Ronkin, “O tselykh funktsiyakh konechnoi stepeni i o funktsiyakh vpolne regulyarnogo rosta ot neskolkikh peremennykh”, DAN SSSR, 119:2 (1958), 211–214 | MR | Zbl

[6] L. Gruman, “Entire functions of several variables and their asymptotic growth”, Arkiv för math., 9:1 (1971), 141–163 | DOI | MR | Zbl

[7] L. Gruman, “Les zeros des fonctions entieres d'ordre fini, de croissance reguliere dance $\mathbf C^N$”, C. r. Acad,.scient., 282:7 (1976), 363–365, Paris | MR | Zbl

[8] P. Z. Agranovich, L. I. Ronkin, “Ob usloviyakh plyurigarmonichnosti indikatora golomorfnoi funktsii mnogikh peremennykh”, Matem. sb., 98(140) (1975), 319–332 | Zbl

[9] V. S. Azarin, “Ob asimptoticheskom povedenii subgarmonicheskikh i tselykh funktsii”, DAN SSSR, 229:6 (1976), 1289–1291 | MR | Zbl

[10] P. 3. Agranovich, L. I. Ronkin, O funktsiyakh vpolne regulyarnogo rosta mnogikh peremennykh, Preprint FTINT AN USSR, Kharkov, 29/XI 1976 g

[11] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, izd-vo “Nauka”, Moskva, 1970 | MR

[12] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, izd-vo “Nauka”, Moskva, 1966 | MR

[13] L. Khërmander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, izd-vo “Mir”, Moskva, 1968 | MR

[14] V. N. Logvinenko, “Postroenie tseloi funktsii s zadannym indikatorom pri zadannom tselom utochnennom poryadke”, Funkts. analiz, 6:4 (1972), 87–88 | MR | Zbl