Approximation, by rational functions, of convex functions with given modulus of continuity
Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 1-24
Voir la notice de l'article provenant de la source Math-Net.Ru
We denote by $R_n[f]$ the least deviation of the continuous function $f(x)$,
$x\in[a,b]$, from the rational functions of order at most $n$.
We establish the following theorems.
Theorem 1. Let $f(x)$ be convex on $[a,b]$ $(-\infty$
with modulus of continuity $\omega(\delta,f)$. Then
$$
R_n[f]\leqslant c\frac{\ln^6n}{n^2}\max_{(b-a)e^{-n}\leqslant\theta\leqslant
b-a}\biggl\{\omega(\theta)\ln\frac{b-a}{\theta}\biggr\},\qquad n=2,3,\dots,
$$
where $c$ is an absolute constant.
\medskip
Theorem 2. There exist a convex function $f^*(x)$ and a sequence
$n_k\nearrow\infty$ such that 1) $\omega(\delta,f^*)\leqslant(\ln(e/\delta))^{-\gamma}$, $0\delta\leqslant1$, and 2) $R_{n_k}[f^*]\geqslant c_1\gamma/n^{1-\gamma}_k$, where $c_1$ is an absolute constant. Bibliography: 8 titles.
@article{SM_1978_34_1_a0,
author = {A. P. Bulanov},
title = {Approximation, by rational functions, of convex functions with given modulus of continuity},
journal = {Sbornik. Mathematics},
pages = {1--24},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_1_a0/}
}
A. P. Bulanov. Approximation, by rational functions, of convex functions with given modulus of continuity. Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_1978_34_1_a0/