The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations
Sbornik. Mathematics, Tome 33 (1977) no. 3, pp. 403-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an asymptotic expansion in the small parameter $\varepsilon$ of the solution of a mixed boundary value problem for the equation $$ \varepsilon^2\biggl(\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}\biggr)+\varepsilon^ka(x,t)\frac{\partial u}{\partial t}+b(x,t)u=f(x,t)\qquad(0<x<l,\quad0<l\leqslant T) $$ in the two cases $k=1$ and $k=1/2$. The asymptotics of the solution contains a regular part, consisting of ordinary boundary functions, which play a role in a neighborhood of the sides $t=0$, $x=0$, and $x=l$, and the so-called angular boundary functions, which come into play in a neighborhood of the angular points $(0,0)$ and $(l,0)$. When $k=1$, these angular boundary functions are determined from hyperbolic equations with constant coefficients; when $k=1/2$, they are determined from parabolic equations with constant coefficients. Bibliography: 7 titles.
@article{SM_1977_33_3_a5,
     author = {V. F. Butuzov},
     title = {The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations},
     journal = {Sbornik. Mathematics},
     pages = {403--425},
     year = {1977},
     volume = {33},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_3_a5/}
}
TY  - JOUR
AU  - V. F. Butuzov
TI  - The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 403
EP  - 425
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_3_a5/
LA  - en
ID  - SM_1977_33_3_a5
ER  - 
%0 Journal Article
%A V. F. Butuzov
%T The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations
%J Sbornik. Mathematics
%D 1977
%P 403-425
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1977_33_3_a5/
%G en
%F SM_1977_33_3_a5
V. F. Butuzov. The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations. Sbornik. Mathematics, Tome 33 (1977) no. 3, pp. 403-425. http://geodesic.mathdoc.fr/item/SM_1977_33_3_a5/

[1] Su Yui-chen, “Asimptotika reshenii nekotorykh vyrozhdayuschikhsya kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka”, DAN SSSR, 138:1 (1961), 63–66

[2] V. A. Trenogin, “Ob asimptotike reshenii kvazilineinykh giperbolicheskikh uravnenii s giperbolicheskim pogransloem”, Trudy MFTI, 1962, no. 9, 112–127 | Zbl

[3] V. F. Butuzov, “Singulyarno vozmuschennoe uravnenie ellipticheskogo tipa s dvumya malymi parametrami”, Diff. uravneniya, 12:10 (1976), 1793–1803 | MR | Zbl

[4] A. M. Ilin, E. F. Lelikova, “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravneniya $\varepsilon\Delta u-a(x, y)u_y=f(x, y)$ v pryamougolnike”, Matem. sb., 96(138) (1975), 568–583 | MR

[5] S. A. Lomov, “Formalizm neklassicheskoi teorii vozmuschenii”, DAN SSSR, 212:1 (1973), 33–36 | MR | Zbl

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, izd-vo «Nauka», Moskva, 1967

[7] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, izd-vo «Nauka», Moskva, 1966