On~the question of representing entire functions by exponential series
Sbornik. Mathematics, Tome 33 (1977) no. 3, pp. 327-342

Voir la notice de l'article provenant de la source Math-Net.Ru

It was established by the author (RZhMat., 1966, 4B 107) that any entire function $F(z)$ of finite order may be represented in the whole plane by a Dirichlet series $$ F(z)=\sum_{k=1}^\infty A_ke^{|\lambda_k|z}. $$ It is established that for suitable choice of the sequence $\{\lambda_k\}$ the expression $\sum_{k=1}^\infty|A_k|e^{|\lambda_k|r}$ has, for large $r$, the upper bounds 1) $\exp r^{\rho+\varepsilon}$ $\forall\,\varepsilon>0$, if $F(z)$ has order $\rho>1$; 2) $\exp(\sigma+\varepsilon)r^\rho$ $\forall\,\varepsilon>0$, if $F(z)$ has order $\rho>1$ and finite type $\sigma$. Bibliography: 7 titles.
@article{SM_1977_33_3_a2,
     author = {A. F. Leont'ev},
     title = {On~the question of representing entire functions by exponential series},
     journal = {Sbornik. Mathematics},
     pages = {327--342},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_3_a2/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - On~the question of representing entire functions by exponential series
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 327
EP  - 342
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_3_a2/
LA  - en
ID  - SM_1977_33_3_a2
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T On~the question of representing entire functions by exponential series
%J Sbornik. Mathematics
%D 1977
%P 327-342
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_33_3_a2/
%G en
%F SM_1977_33_3_a2
A. F. Leont'ev. On~the question of representing entire functions by exponential series. Sbornik. Mathematics, Tome 33 (1977) no. 3, pp. 327-342. http://geodesic.mathdoc.fr/item/SM_1977_33_3_a2/