On~the question of representing entire functions by exponential series
Sbornik. Mathematics, Tome 33 (1977) no. 3, pp. 327-342
Voir la notice de l'article provenant de la source Math-Net.Ru
It was established by the author (RZhMat., 1966, 4B 107) that any entire function $F(z)$ of finite order may be represented in the whole plane by a Dirichlet series
$$
F(z)=\sum_{k=1}^\infty A_ke^{|\lambda_k|z}.
$$ It is established that for suitable choice of the sequence $\{\lambda_k\}$ the expression $\sum_{k=1}^\infty|A_k|e^{|\lambda_k|r}$ has, for large $r$, the upper bounds
1) $\exp r^{\rho+\varepsilon}$ $\forall\,\varepsilon>0$, if $F(z)$ has order $\rho>1$;
2) $\exp(\sigma+\varepsilon)r^\rho$ $\forall\,\varepsilon>0$, if $F(z)$ has order $\rho>1$ and finite type $\sigma$.
Bibliography: 7 titles.
@article{SM_1977_33_3_a2,
author = {A. F. Leont'ev},
title = {On~the question of representing entire functions by exponential series},
journal = {Sbornik. Mathematics},
pages = {327--342},
publisher = {mathdoc},
volume = {33},
number = {3},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_33_3_a2/}
}
A. F. Leont'ev. On~the question of representing entire functions by exponential series. Sbornik. Mathematics, Tome 33 (1977) no. 3, pp. 327-342. http://geodesic.mathdoc.fr/item/SM_1977_33_3_a2/