Pfaffian systems of Fuchs type on a~complex analytic manifold
Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 98-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give necessary and sufficient conditions for a completely integrable Pfaffian system with regular singular points on $A$ to be a Fuchsian system, where $A$ is a divisor with normal crossings in a compact Kähler manifold $W^m$. We prove that the condition of being a Fuchsian system is equivalent to the solvability of some first Cousin problem on $W^m$. This condition appears particularly simple when $W^m$ is complex projective space. Bibliography: 12 titles.
@article{SM_1977_32_1_a5,
     author = {A. A. Bolibrukh},
     title = {Pfaffian systems of {Fuchs} type on a~complex analytic manifold},
     journal = {Sbornik. Mathematics},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_1_a5/}
}
TY  - JOUR
AU  - A. A. Bolibrukh
TI  - Pfaffian systems of Fuchs type on a~complex analytic manifold
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 98
EP  - 108
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_1_a5/
LA  - en
ID  - SM_1977_32_1_a5
ER  - 
%0 Journal Article
%A A. A. Bolibrukh
%T Pfaffian systems of Fuchs type on a~complex analytic manifold
%J Sbornik. Mathematics
%D 1977
%P 98-108
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_1_a5/
%G en
%F SM_1977_32_1_a5
A. A. Bolibrukh. Pfaffian systems of Fuchs type on a~complex analytic manifold. Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 98-108. http://geodesic.mathdoc.fr/item/SM_1977_32_1_a5/