Mappings and imbeddings of dyadic spaces
Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 45-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that a dyadic space of weight $\tau$ contains the Cantor cube $D^\tau$ if and only if it cannot be represented as a countable union of closed subsets with weights less than $\tau$. A similar result has been independently obtained by Gerlits. That solves a problem posed by Pełczyǹski. In the particular case when the dyadic space is, in addition, a Dugundji space, the problem has been recently solved by Haydon. Further, it follows that any dyadic space whose weight $\tau$ is not a sum of countably many smaller cardinals can be continuously mapped onto the Tikhonov cube $I^\tau$ and contains the Cantor cube $D^\tau$. This is true, in particular, when $\tau$ is a regular cardinal, as was proved by Hagler. By means of the methods developed in this paper we prove that the depth of a dyadic space is equal to its cardinality and is attained; this is a final solution of Arkhangel'skii's problem about the “depth” of dyadic spaces. Bibliography: 19 titles.
@article{SM_1977_32_1_a3,
     author = {B. A. Efimov},
     title = {Mappings and imbeddings of dyadic spaces},
     journal = {Sbornik. Mathematics},
     pages = {45--57},
     year = {1977},
     volume = {32},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_1_a3/}
}
TY  - JOUR
AU  - B. A. Efimov
TI  - Mappings and imbeddings of dyadic spaces
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 45
EP  - 57
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_1_a3/
LA  - en
ID  - SM_1977_32_1_a3
ER  - 
%0 Journal Article
%A B. A. Efimov
%T Mappings and imbeddings of dyadic spaces
%J Sbornik. Mathematics
%D 1977
%P 45-57
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1977_32_1_a3/
%G en
%F SM_1977_32_1_a3
B. A. Efimov. Mappings and imbeddings of dyadic spaces. Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/SM_1977_32_1_a3/

[1] A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obschei topologii v zadachakh i uprazhneniyakh, izd-vo «Nauka», Moskva, 1974 | MR

[2] A. V. Arkhangelskii, “Ekstremalno nesvyaznyi bikompakt vesa $c$ neodnoroden”, DAN SSSR, 175:4 (1967), 751–754

[3] N. A. Shanin, “Teorema iz obschei teorii mnozhestv”, DAN SSSR, 53 (1946), 399–400 | MR | Zbl

[4] N. A. Shanin, “O proizvedenii topologicheskikh prostranstv”, Trudy Matem. in-ta im. Steklova, XXIV, 1948, 3–111 | MR | Zbl

[5] B. A. Efimov, “Diadicheskie bikompakty”, Trudy Mosk. matem. ob-va, XIV (1965), 211–247 | MR

[6] B. A. Efimov, “Ekstremalno nesvyaznye bikompakty i absolyuty”, Trudy Mosk. matem. ob-va, XXIII (1970), 235–276 | MR

[7] B. A. Efimov, “O podprostranstvakh diadicheskikh bikompaktov”, DAN SSSR, 189:5 (1969), 987–990

[8] B. A. Efimov, “O moschnosti rasshirenii diadicheskikh prostranstv”, Matem. sb., 96 (138) (1975), 614–632 | MR | Zbl

[9] B. Efimov, “On the embedding of extremally disconnected spaces into bicompacta”, Proc. third Prague Top. Symp. (1971), Prague, 1972, 103–107 | MR | Zbl

[10] B. Efimov, R. Engelking, “Remarks on dyadic spaces, II”, Colloq. math., 13:2 (1965), 181–197 | MR | Zbl

[11] R. Engelking, A. Pełczynski, “Remarks on dyadic spaces, I”, Colloq. math., 11:1 (1963), 55–63 | MR | Zbl

[12] R. Engelking, “On the circumference of Alexandroff”, Bull. Acad. Polon. Sci., ser. math., 16:8 (1968), 629–634 | MR | Zbl

[13] P. Erdos, R. Rado, “Intersection theorem for system of sets”, J. London. Math. Soc., 35 (1960), 85–90 | DOI | MR

[14] J. Hagler, “On the structure of $S$ and $C(S)$ for $S$ dyadic”, Trans. Amer. Math. Soc., 214 (1975), 415–428 | DOI | MR | Zbl

[15] B. E. Shapirovskii, “O vlozhenii ekstremalno nesvyaznykh prostranstv v bikompakty, $b$-tochki i ves tochechno normalnykh prostranstv”, DAN SSSR, 223:5 (1975), 1083–1086 | MR

[16] L. B. Shapiro, “Prostranstvo zamknutykh podmnozhestv $D_2^\omega$ ne yavlyaetsya diadicheskim bikompaktom”, DAN SSSR, 228:6 (1976), 1302–1305 | MR | Zbl

[17] A. Pelchinskii, Lineinye prodolzheniya, lineinye usredneniya i ikh primeneniya, izd-vo «Mir», Moskva, 1970

[18] R. Haydon, “Embedding $D^\tau$ in Dugundji spaces, with an application to linear topological classification of spaces of continuous functions”, Stud. Math., 56 (1976), 31–44 | MR

[19] J. Gerlits, On subspaces of dyadic compacta, Math. Inst. Hung. Acad. Sci., Budapest, 1976, 1–16 | MR