), where $\{\lambda_n\}$ and $\{\mu_n\}$ are positive sequences with $\lambda_n\downarrow0$ and $\mu_n\downarrow0$. Furthermore, it is proved that the condition of P. L. Ul'yanov $$ \sum_{n=1}^\infty n^{q/p-2}\lambda_n^q<\infty\qquad(1\leqslant p<q<\infty) $$ is not only sufficient but is also necessary for the imbedding $E_p(\lambda)\subset L^q(0,2\pi)$. The question of imbedding $E_p(\lambda)$ in the space of continuous functions is also considered. Bibliography: 7 titles.
@article{SM_1977_31_2_a3,
author = {V. I. Kolyada},
title = {Imbedding theorems and inequalities in various metrics for best approximations},
journal = {Sbornik. Mathematics},
pages = {171--189},
year = {1977},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a3/}
}
V. I. Kolyada. Imbedding theorems and inequalities in various metrics for best approximations. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 171-189. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a3/
[1] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44 (98) (1958), 53–84
[2] P. L. Ulyanov, “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81 (123) (1970), 104–131
[3] P. L. Ulyanov, “Vlozhenie nekotorykh klassov funktsii $H_p^\omega$”, Izv. AN SSSR, seriya matem., 32 (1968), 649–686
[4] V. A. Andrienko, “O neobkhodimykh usloviyakh vlozheniya klassov funktsii $H_p^\omega$”, Matem. sb., 78 (120) (1969), 280–300 | MR | Zbl
[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo «Nauka», Moskva, 1969 | MR
[6] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960
[7] V. I. Kolyada, “O vlozhenii v klassy $\varphi(L)$”, Izv. AN SSSR, seriya matem., 39 (1975), 418–437 | Zbl