Imbedding theorems and inequalities in various metrics for best approximations
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 171-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $1\leqslant p<\infty$, and let $\lambda=\{\lambda_n\}$ be a sequence of positive numbers with $\lambda_n\downarrow0$. Denote by $E_p(\lambda)$ the class of all functions $f\in L^p(0,2\pi)$ for which the best approximation by trigonometric polynomials satisfies the condition $E_n^{(p)}(f)=O(\lambda_n)$. In this paper the relation between best approximations in different metrics is studied. Necessary and sufficient conditions are found for the imbedding $E_p(\lambda)\subset E_q(\mu)$ ($1), where $\{\lambda_n\}$ and $\{\mu_n\}$ are positive sequences with $\lambda_n\downarrow0$ and $\mu_n\downarrow0$. Furthermore, it is proved that the condition of P. L. Ul'yanov $$ \sum_{n=1}^\infty n^{q/p-2}\lambda_n^q<\infty\qquad(1\leqslant p<q<\infty) $$ is not only sufficient but is also necessary for the imbedding $E_p(\lambda)\subset L^q(0,2\pi)$. The question of imbedding $E_p(\lambda)$ in the space of continuous functions is also considered. Bibliography: 7 titles.
@article{SM_1977_31_2_a3,
     author = {V. I. Kolyada},
     title = {Imbedding theorems and inequalities in various metrics for best approximations},
     journal = {Sbornik. Mathematics},
     pages = {171--189},
     year = {1977},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a3/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - Imbedding theorems and inequalities in various metrics for best approximations
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 171
EP  - 189
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_2_a3/
LA  - en
ID  - SM_1977_31_2_a3
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T Imbedding theorems and inequalities in various metrics for best approximations
%J Sbornik. Mathematics
%D 1977
%P 171-189
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1977_31_2_a3/
%G en
%F SM_1977_31_2_a3
V. I. Kolyada. Imbedding theorems and inequalities in various metrics for best approximations. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 171-189. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a3/

[1] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44 (98) (1958), 53–84

[2] P. L. Ulyanov, “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81 (123) (1970), 104–131

[3] P. L. Ulyanov, “Vlozhenie nekotorykh klassov funktsii $H_p^\omega$”, Izv. AN SSSR, seriya matem., 32 (1968), 649–686

[4] V. A. Andrienko, “O neobkhodimykh usloviyakh vlozheniya klassov funktsii $H_p^\omega$”, Matem. sb., 78 (120) (1969), 280–300 | MR | Zbl

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo «Nauka», Moskva, 1969 | MR

[6] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960

[7] V. I. Kolyada, “O vlozhenii v klassy $\varphi(L)$”, Izv. AN SSSR, seriya matem., 39 (1975), 418–437 | Zbl