On the general theory of boundary value problems
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 147-155
Voir la notice de l'article provenant de la source Math-Net.Ru
In a bounded domain $V$ in $n$-dimensional Euclidean space each formal, linear, partial differential operator $L(D)$ with constant coefficients may be connected with so-called minimal $L_0$ and maximal $\widetilde L$ operators in the Hilbert space $\mathscr L^2(V)$. The operator $L$ is said to be proper if $L_0\subset L\subset\widetilde L$ and the equation $Lu=f$ has a unique solution for any $f\in\mathscr L^2(V)$. Using the complete description of proper operators that we obtain for $n=1$, in this article we discuss problems connected with the description of proper operators in the general case when $n>1$.
Bibliography: 8 titles.
@article{SM_1976_29_2_a0,
author = {A. A. Dezin},
title = {On the general theory of boundary value problems},
journal = {Sbornik. Mathematics},
pages = {147--155},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a0/}
}
A. A. Dezin. On the general theory of boundary value problems. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 147-155. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a0/