On the general theory of boundary value problems
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 147-155

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded domain $V$ in $n$-dimensional Euclidean space each formal, linear, partial differential operator $L(D)$ with constant coefficients may be connected with so-called minimal $L_0$ and maximal $\widetilde L$ operators in the Hilbert space $\mathscr L^2(V)$. The operator $L$ is said to be proper if $L_0\subset L\subset\widetilde L$ and the equation $Lu=f$ has a unique solution for any $f\in\mathscr L^2(V)$. Using the complete description of proper operators that we obtain for $n=1$, in this article we discuss problems connected with the description of proper operators in the general case when $n>1$. Bibliography: 8 titles.
@article{SM_1976_29_2_a0,
     author = {A. A. Dezin},
     title = {On the general theory of boundary value problems},
     journal = {Sbornik. Mathematics},
     pages = {147--155},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a0/}
}
TY  - JOUR
AU  - A. A. Dezin
TI  - On the general theory of boundary value problems
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 147
EP  - 155
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a0/
LA  - en
ID  - SM_1976_29_2_a0
ER  - 
%0 Journal Article
%A A. A. Dezin
%T On the general theory of boundary value problems
%J Sbornik. Mathematics
%D 1976
%P 147-155
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a0/
%G en
%F SM_1976_29_2_a0
A. A. Dezin. On the general theory of boundary value problems. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 147-155. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a0/