On the completeness of derived chains
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 35-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of completeness of the system of eigenvectors and associated vectors of operator-valued functions which are analytic in an angular region and which assume values in the ring $\mathfrak R$ of bounded linear operators in a separable Hilbert space $\mathfrak H$. As a corollary of the fundamental theorem proved in this paper we obtain the following result. Theorem 1. {\it Let $L(\lambda)=I-B_0H^\beta-\lambda B_1 H^{1+\beta}-\dots-\lambda^{n-1}B_{n-1}H^{n-1+\beta}-\lambda^nH^n,$ where $\beta>0$. $B_k\in\mathfrak R$ and $H$ is a completely continuous positive operator, moreover, let $\varliminf us^q_u(H)=0$ for some $q>0$. Then for every $\varepsilon>0$ the closed linear hull of the eigenvectors and associated vectors of $L(\lambda)$ (or $L^*(\overline\lambda)$) which correspond to the eigenvalues lying in the angular region $|\arg\lambda|<\varepsilon$ has finite defect in $\mathfrak H$.} Bibliography: 20 titles.
@article{SM_1976_29_1_a3,
     author = {G. V. Radzievskii},
     title = {On the completeness of derived chains},
     journal = {Sbornik. Mathematics},
     pages = {35--54},
     year = {1976},
     volume = {29},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a3/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - On the completeness of derived chains
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 35
EP  - 54
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a3/
LA  - en
ID  - SM_1976_29_1_a3
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T On the completeness of derived chains
%J Sbornik. Mathematics
%D 1976
%P 35-54
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_29_1_a3/
%G en
%F SM_1976_29_1_a3
G. V. Radzievskii. On the completeness of derived chains. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 35-54. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a3/

[1] G. V. Radzievskii, “O bazisnosti proizvodnykh tsepochek”, Izv. AN SSSR, seriya matem., 39 (1975), 1182–1218 | MR | Zbl

[2] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN SSSR, 77:1 (1951), 11–14 | Zbl

[3] M. V. Keldysh, “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, Uspekhi matem. nauk, XXVI:4 (160) (1971), 15–41 | MR

[4] Dzh. E. Allakhverdiev, “O polnote sistemy sobstvennykh i prisoedinennykh elementov nesamosopryazhennykh operatorov, blizkikh k normalnym”, DAN SSSR, 115:2 (1957), 207–210 | Zbl

[5] A. S. Markus, “K spektralnoi teorii polinomialnykh operatornykh puchkov v banakhovom prostranstve”, Sib. matem. zh., VIII:6 (1967), 1346–1369 | MR

[6] E. Z. Mogulskii, “Teoremy polnoty sistemy sobstvennykh i prisoedinennykh vektorov ratsionalnogo operatornogo puchka”, Izv. AN Arm. SSR, seriya matem., 3:6 (1968), 427–442 | MR

[7] V. I. Matsaev, E. Z. Mogulskii, “Nekotorye priznaki kratkoi polnoty sistemy sobstvennykh i prisoedinennykh vektorov polinomialnykh puchkov operatorov”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, no. 13, Kharkov, 1971, 3–45 | Zbl

[8] G. V. Radzievskii, “Kratnaya polnota sobstvennykh i prisoedinennykh vektorov nekotorykh klassov operator-funktsii, analiticheskikh v okruge”, Funkts. analiz, 7:1 (1973), 84–85 | MR | Zbl

[9] G. E. Shilov, B. A. Gurevich, Integral, mera i proizvodnaya, izd-vo «Nauka», Moskva, 1967

[10] V. I. Matsaev, “Ob odnom metode otsenki rezolventy nesamosopryazhennykh operatorov”, DAN SSSR, 154:5 (1964), 1034–1037 | Zbl

[11] V. B. Lidskii, “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Trudy Mosk. matem. ob-va, XI (1962), 3–35 | MR

[12] H. Weyl, “Inequalities between the two kinds of eigenvalues of a linear transformation”, Proc. Nat. Acad. Sci. USA, 35 (1949), 408–411 | DOI | MR | Zbl

[13] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, izd-vo «Nauka», Moskva, 1970 | MR

[14] G. V. Radzievskii, “Kratnaya polnota kornevykh vektorov puchka M. V. Keldysha, vozmuschennogo analiticheskoi v kruge operator-funktsiei”, Matem. sb., 91 (133) (1971), 310–335 | MR

[15] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. II, izd-vo «Nauka», Moskva, 1968

[16] M. G. Krein, G. K. Langer, “K teorii kvadratichnykh puchkov samosopryazhennykh operatorov”, DAN SSSR, 154:6 (1964), 1258–1261 | MR | Zbl

[17] M. G. Krein, G. K. Langer, “O nekotorykh matematicheskikh printsipakh lineinoi teorii dempfirovannykh kolebanii kontinuumov”, Trudy mezhdunarodnogo simpoziuma po primeneniyu teorii funktsii kompleksnogo peremennogo v mekhanike sploshnoi sredy, izd-vo «Nauka», Moskva, 1965

[18] G. V. Radzievskii, “Ob odnom metode dokazatelstva polnoty kornevykh vektorov operator-funktsii”, DAN SSSR, 214:2 (1974), 291–294 | MR | Zbl

[19] M. G. Gasymov, “K teorii polinomialnykh operatornykh puchkov”, DAN SSSR, 199:4 (1971), 747–750 | Zbl

[20] M. G. Gasymov, “O kratnoi polnote chasti sobstvennykh i prisoedinennykh vektorov polinomialnykh operatornykh puchkov”, Izv. AN Arm. SSR, seriya matem., 6:2–3 (1971), 131–147 | MR | Zbl