On the number of permutations of special form
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 421-429

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the number of permutations $a$ for which the equation $x^k=a$, where $a\in S_n$ ($S_n$ is the symmetric group of degree $n$) and $k1$ is a fixed natural number, has at least one solution $x\in S_n$ is asymptotically equal to $$ C(k)n^{\varphi(k)/k-1/2}\biggl(\frac ne\biggr)^n\quad\text{as}\quad n\to\infty, $$ where $C(k)$ is a constant depending only on $k$, and $\varphi(k)$ is the Euler function. Bibliography: 4 titles.
@article{SM_1976_28_3_a9,
     author = {M. P. Mineev and A. I. Pavlov},
     title = {On the number of permutations of special form},
     journal = {Sbornik. Mathematics},
     pages = {421--429},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/}
}
TY  - JOUR
AU  - M. P. Mineev
AU  - A. I. Pavlov
TI  - On the number of permutations of special form
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 421
EP  - 429
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/
LA  - en
ID  - SM_1976_28_3_a9
ER  - 
%0 Journal Article
%A M. P. Mineev
%A A. I. Pavlov
%T On the number of permutations of special form
%J Sbornik. Mathematics
%D 1976
%P 421-429
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/
%G en
%F SM_1976_28_3_a9
M. P. Mineev; A. I. Pavlov. On the number of permutations of special form. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 421-429. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/