On the number of permutations of special form
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 421-429
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the number of permutations $a$ for which the equation $x^k=a$, where $a\in S_n$ ($S_n$ is the symmetric group of degree $n$) and $k<1$ is a fixed natural number, has at least one solution $x\in S_n$ is asymptotically equal to $$ C(k)n^{\varphi(k)/k-1/2}\biggl(\frac ne\biggr)^n\quad\text{as}\quad n\to\infty, $$ where $C(k)$ is a constant depending only on $k$, and $\varphi(k)$ is the Euler function. Bibliography: 4 titles.
@article{SM_1976_28_3_a9,
author = {M. P. Mineev and A. I. Pavlov},
title = {On the number of permutations of special form},
journal = {Sbornik. Mathematics},
pages = {421--429},
year = {1976},
volume = {28},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/}
}
M. P. Mineev; A. I. Pavlov. On the number of permutations of special form. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 421-429. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/
[1] I. M. Vinogradov, Osnovy teorii chisel, ONTI, Moskva–Leningrad, 1936 | MR
[2] J. Blum, “Enumeration of the squere permutations in $S_n$”, J. Combinatorial theory, (A), 17 (1974), 156–161 | DOI | MR | Zbl
[3] D. Riordan, Vvedenie v kombinatornyi analiz, IL, Moskva, 1963
[4] A. O. Gelfond, Ischislenie konechnykh raznostei, Gostekhizdat, Moskva–Leningrad, 1952 | MR