On the number of permutations of special form
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 421-429
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the number of permutations $a$ for which the equation $x^k=a$, where $a\in S_n$ ($S_n$ is the symmetric group of degree $n$) and $k1$ is a fixed natural number, has at least one solution $x\in S_n$ is asymptotically equal to
$$
C(k)n^{\varphi(k)/k-1/2}\biggl(\frac ne\biggr)^n\quad\text{as}\quad n\to\infty,
$$
where $C(k)$ is a constant depending only on $k$, and $\varphi(k)$ is the Euler function.
Bibliography: 4 titles.
@article{SM_1976_28_3_a9,
author = {M. P. Mineev and A. I. Pavlov},
title = {On the number of permutations of special form},
journal = {Sbornik. Mathematics},
pages = {421--429},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/}
}
M. P. Mineev; A. I. Pavlov. On the number of permutations of special form. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 421-429. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a9/