On~the uniform distribution of the sequence $\{\alpha\lambda^x\}$
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 183-197
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\lambda>1$ be a real transcendental number. In this paper a number $\alpha$ is constructed such that the sequence $\{\alpha\lambda^x\}_{x=1}^\infty$ is completely uniformly distributed.
For real $\lambda_\nu>1$ ($\nu=1,\dots,s$) numbers $\alpha_1,\dots,\alpha_s$ are constructed such that the remainder of the uniform distribution of the sequence ($\{\alpha_1\lambda_1^x\},\dots,\{\alpha_s\lambda_s^x\}$), $x=\nobreak1,\dots,P$, is equal to $O\bigl(P^{1/2}(\ln P)^{s+1/2}\bigr)$.
Bibliography: 6 titles.
@article{SM_1975_27_2_a2,
author = {M. B. Levin},
title = {On~the uniform distribution of the sequence $\{\alpha\lambda^x\}$},
journal = {Sbornik. Mathematics},
pages = {183--197},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a2/}
}
M. B. Levin. On~the uniform distribution of the sequence $\{\alpha\lambda^x\}$. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 183-197. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a2/