The growth of integral curves of finite lower order
Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 427-448

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the study of the deviations of integral curves of finite lower order. The basic result is that if a $p$-dimensional integral curve $\mathbf G(z)$ has finite lower order $\lambda,$ then its deviations with respect to an arbitrary fixed admissible system of vectors $A$ satisfy $$ \sum_{a\in A}\beta(a,\mathbf G)\leqslant K(1+\lambda)(p!)^3, $$ where $K$ is an absolute constant. This estimate is an analogue of the classical relation for the defects of integral curves. Bibliography: 31 titles.
@article{SM_1975_26_4_a0,
     author = {V. P. Petrenko},
     title = {The growth of integral curves of finite lower order},
     journal = {Sbornik. Mathematics},
     pages = {427--448},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_4_a0/}
}
TY  - JOUR
AU  - V. P. Petrenko
TI  - The growth of integral curves of finite lower order
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 427
EP  - 448
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_4_a0/
LA  - en
ID  - SM_1975_26_4_a0
ER  - 
%0 Journal Article
%A V. P. Petrenko
%T The growth of integral curves of finite lower order
%J Sbornik. Mathematics
%D 1975
%P 427-448
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_4_a0/
%G en
%F SM_1975_26_4_a0
V. P. Petrenko. The growth of integral curves of finite lower order. Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 427-448. http://geodesic.mathdoc.fr/item/SM_1975_26_4_a0/