The growth of integral curves of finite lower order
Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 427-448
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the study of the deviations of integral curves of finite lower order.
The basic result is that if a $p$-dimensional integral curve $\mathbf G(z)$ has finite lower order $\lambda,$ then its deviations with respect to an arbitrary fixed admissible system of vectors $A$ satisfy
$$
\sum_{a\in A}\beta(a,\mathbf G)\leqslant K(1+\lambda)(p!)^3,
$$
where $K$ is an absolute constant.
This estimate is an analogue of the classical relation for the defects of integral curves.
Bibliography: 31 titles.
@article{SM_1975_26_4_a0,
author = {V. P. Petrenko},
title = {The growth of integral curves of finite lower order},
journal = {Sbornik. Mathematics},
pages = {427--448},
publisher = {mathdoc},
volume = {26},
number = {4},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_4_a0/}
}
V. P. Petrenko. The growth of integral curves of finite lower order. Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 427-448. http://geodesic.mathdoc.fr/item/SM_1975_26_4_a0/