On~the growth of an entire function of exponential type on a~sequence of points
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 567-578

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a function $F(\lambda)=\int_Ce^{\lambda t}d\sigma(t)$, where $C$ is an analytic arc whose tangent at each point makes an angle with the real axis of less than $\pi/4$ radians, and $\sigma(t)$ is a function of bounded variation on $C$ which is continuous from the left on $C$ and nonconstant in any neighborhood of the right end-point $b$. Suppose that $0\lambda_k\uparrow\infty$, $\lambda_{k+1}-\lambda_k\geqslant h>0$ ($k\geqslant1$) and $\sum_1^\infty\lambda_k^{-1}=\infty$. We show that $$ \varlimsup_{k\to\infty}\frac{\ln|F(\lambda_k)|}{\lambda_k}=\operatorname{Re}b. $$ When $C$ is a segment of the real axis, this result is well known. Bibliography: 3 titles.
@article{SM_1975_25_4_a7,
     author = {A. F. Leont'ev},
     title = {On~the growth of an entire function of exponential type on a~sequence of points},
     journal = {Sbornik. Mathematics},
     pages = {567--578},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a7/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - On~the growth of an entire function of exponential type on a~sequence of points
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 567
EP  - 578
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a7/
LA  - en
ID  - SM_1975_25_4_a7
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T On~the growth of an entire function of exponential type on a~sequence of points
%J Sbornik. Mathematics
%D 1975
%P 567-578
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a7/
%G en
%F SM_1975_25_4_a7
A. F. Leont'ev. On~the growth of an entire function of exponential type on a~sequence of points. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 567-578. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a7/